No Arabic abstract
Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO$_3$ (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, we report the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO$_3$. We generate 2DEGs by the simple deposition of Al metal onto KTaO$_3$ single crystals, characterize them by angle-resolved photoemission spectroscopy and magnetotransport, and demonstrate the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. We compare the spin-charge interconversion efficiency with that of STO-based interfaces, relate it to the 2DEG electronic structure, and give perspectives for the implementation of KTaO$_3$ 2DEGs into spin-orbitronic devices.
SrTiO$_3$-based two-dimensional electron gases (2DEGs) can be formed through the deposition of epitaxial oxides like LaAlO$_3$ or of reactive metals such as Al. Such 2DEGs possess a finite Rashba spin-orbit coupling that has recently been harnessed to interconvert charge and spin currents through the direct and inverse Edelstein and spin Hall effects. Here we compare the formation and properties of 2DEGs generated in SrTiO$_3$ by the growth of Al, Ta and Y ultrathin films by magnetron sputtering. By combining in situ and ex situ X-ray photoelectron spectroscopy (XPS) we gain insight into the reduction of the SrTiO$_3$ and the appearance of Ti$^{3+}$ states associated with 2DEG formation, its reoxidation by exposure to the air, and the transformation of the metal into its binary oxides. We extract the carrier densities through magnetotransport and compare them with the XPS data. Finally, working with samples covered by an extra layer of NiFe, we perform spin-pumping ferromagnetic resonance experiments and investigate spin-charge conversion as a function of gate voltage. We identify trends in the data across the different sample systems and discuss them as a function of the carrier density and the transparency of the metal oxide tunnel barrier.
We measure spin-orbit torques (SOTs) in a unique model system of all-epitaxial ferrite/Pt bilayers to gain insights into charge-spin interconversion in Pt. With negligible electronic conduction in the insulating ferrite, the crystalline Pt film acts as the sole source of charge-to-spin conversion. A small field-like SOT independent of Pt thickness suggests a weak Rashba-Edelstein effect at the ferrite/Pt interface. By contrast, we observe a sizable damping-like SOT that depends on the Pt thickness, from which we deduce the dominance of an extrinsic spin-Hall effect (skew scattering) and Dyakonov-Perel spin relaxation in the crystalline Pt film. Furthermore, our results point to a large internal spin-Hall ratio of $approx$0.8 in epitaxial Pt. Our experimental work takes an essential step towards understanding the mechanisms of charge-spin interconversion and SOTs in Pt-based heterostructures, which are crucial for power-efficient spintronic devices.
The unique electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we observe superconductivity in electron gases formed at interfaces between (111) oriented KTaO$_3$ and insulating overlayers of either EuO or LaAlO$_3$. The superconducting transition temperature, approaching 2.2 K, is about one order of magnitude higher than that of the LaAlO$_3$/SrTiO$_3$ system. Strikingly, similar electron gases at (001) KTaO$_3$ interfaces remain normal down to 25 mK. The critical field and current-voltage measurements indicate that the superconductivity is two dimensional. Higher mobility EuO/KTaO$_3$ (111) samples show a large in-plane anisotropy in transport properties at low temperatures prior to onset of superconductivity, suggesting the emergence of a stripe like phase where the superconductivity is nearly homogeneous in one direction, but strongly modulated in the other.
We develop a microscopic theory of spin relaxation of a two-dimensional electron gas in quantum wells with anisotropic electron scattering. Both precessional and collision-dominated regimes of spin dynamics are studied. It is shown that, in quantum wells with noncentrosymmetric scatterers, the in-plane and out-of-plane spin components are coupled: spin dephasing of carriers initially polarized along the quantum well normal leads to the emergence of an in-plane spin component even in the case of isotropic spin-orbit splitting. In the collision-dominated regime, the spin-relaxation-rate tensor is expressed in terms of the electric conductivity tensor. We also study the effect of an in-plane and out-of-plane external magnetic field on spin dephasing and show that the field dependence of electron spin can be very intricate.
Spin-orbit torque enables electrical control of the magnetic state of ferromagnets or antiferromagnets. In this work we consider the spin-orbit torque in the 2-d Van der Waals antiferromagnetic bilayer CrI$_3$, in the $n$-doped regime. In the purely antiferromagnetic state, two individually inversion-symmetry broken layers of CrI$_3$ form inversion partners, like the well-studied CuMnAs and Mn$_2$Au. However, the exchange and anisotropy energies are similar in magnitude, unlike previously studied antiferromagnets, which leads to qualitatively different behaviors in this material. Using a combination of first-principles calculations of the spin-orbit torque and an analysis of the ensuing spin dynamics, we show that the deterministic electrical switching of the Neel vector is the result of dampinglike spin-orbit torque, which is staggered on the magnetic sublattices.