Do you want to publish a course? Click here

Uncover band topology via quantized drift in two-dimensional Bloch oscillations

77   0   0.0 ( 0 )
 Added by Bo Zhu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose to measure band topology via quantized drift of Bloch oscillations in a two-dimensional Harper-Hofstadter lattice subjected to tilted fields in both directions. When the difference between the two tilted fields is large, Bloch oscillations uniformly sample all momenta, and hence the displacement in each direction tends to be quantized at multiples of the overall period, regardless of any momentum of initial state. The quantized displacement is related to a reduced Chern number defined as a line integral of Berry curvature in each direction, providing an almost perfect measurement of Chern number. Our scheme can apply to detect Chern number and topological phase transitions not only for the energy-separable band, but also for energy-inseparable bands which cannot be achieved by conventional Thouless pumping or integer quantum Hall effect.



rate research

Read More

Time-periodic (Floquet) drive is a powerful method to engineer quantum phases of matter, including fundamentally non-equilibrium states that are impossible in static Hamiltonian systems. One characteristic example is the anomalous Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator, yet is amenable to bulk localization. We study the response of this topological system to time-dependent noise, which breaks the topologically protecting Floquet symmetry. Surprisingly, we find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude. We trace this robust topology to an interplay between diffusion and Pauli blocking of edge state decay, which we expect should be robust against interactions. We determine the boundaries of the topological phase for a system with spatial disorder numerically through level statistics, and corroborate our results in the limit of vanishing disorder through an analytical Floquet superoperator approach. This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase. We comment on quantization of other topological responses in the absence of Floquet symmetry and potential experimental realizations.
The dissipative response of a quantum system upon a time-dependent drive can be exploited as a probe of its geometric and topological properties. In this work, we explore the implications of such phenomena in the context of two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying non-trivial topology. Based on selection rules, we find that this quantized circular dichroism can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. Moreover, we discuss how these quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the quantum Hall system. This work suggests alternative forms of topological probes in quantum systems based on circular dichroism.
We study the quench dynamics of non-Hermitian topological models with non-Hermitian skin effects. Adopting the non-Bloch band theory and projecting quench dynamics onto the generalized Brillouin zone, we find that emergent topological structures, in the form of dynamic skyrmions, exist in the generalized momentum-time domain, and are correlated with the non-Bloch topological invariants of the static Hamiltonians. The skyrmion structures anchor on the fixed points of dynamics whose existence are conditional on the coincidence of generalized Brillouin zones of the pre- and post-quench Hamiltonians. Global signatures of dynamic skyrmions, however, persist well beyond such a condition, thus offering a general dynamic detection scheme for non-Bloch topology in the presence of non-Hermitian skin effects. Applying our theory to an experimentally relevant, non-unitary quantum walk, we explicitly demonstrate how the non-Bloch topological invariants can be revealed through the non-Bloch quench dynamics.
Phase transitions are ubiquitous in our three-dimensional world. By contrast most conventional transitions do not occur in infinite uniform two-dimensional systems because of the increased role of thermal fluctuations. Here we explore the dimensional crossover of Bose-Einstein condensation (BEC) for a weakly interacting atomic gas confined in a novel quasi-two-dimensional geometry, with a flat in-plane trap bottom. We detect the onset of an extended phase coherence, using velocity distribution measurements and matter-wave interferometry. We relate this coherence to the transverse condensation phenomenon, in which a significant fraction of atoms accumulate in the ground state of the motion perpendicular to the atom plane. We also investigate the dynamical aspects of the transition through the detection of topological defects that are nucleated in a quench cooling of the gas, and we compare our results to the predictions of the Kibble-Zurek theory for the conventional BEC second-order phase transition.
388 - Fuyuki Matsuda , Masaki Tezuka , 2019
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demonstrated that quantized particle transport occurs in this system, and that the transport is expressed as a solution of a Diophantine equation. This topological nature can be understood by mapping the Hamiltonian to a three-dimensional (3D) cubic lattice model with a homogeneous magnetic field. We also propose a continuum model with obliquely introduced superlattice and obtain the amount of pumping by calculating the Berry curvature. For this model, the same Diophantine equation can be derived from the plane-wave approximation. Furthermore, we investigate the effect of a harmonic trap by solving the time-dependent Schrodinger equation. Under a harmonic trap potential, as often used in cold atom experiments, we show, by numerical simulations, that nearly quantized pumping occurs when the phase of the superlattice potential is driven at a moderate speed. Also, we find that two regions appear, the Hofstadter region and the rectifying region, depending on the modulation amplitude of the superlattice potential. In the rectifying region with larger modulation amplitudes, we uncover that the pumping direction is restricted to exactly the $x$-axis or the $y$-axis direction. This difference in these two regions causes a crossover behavior, characterizing the effect of the harmonic trap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا