We explore the sensitivity to new physics of the recently proposed vIOLETA experiment: a 10 kg Skipper Charged Coupled Device detector deployed 12 meters away from a commercial nuclear reactor core. We investigate two broad classes of models which benefit from the very low energy recoil threshold of these detectors, namely neutrino magnetic moments and light mediators coupled to neutrinos and quarks or electrons. We find that this experimental setup is very sensitive to light, weakly coupled new physics, and in particular that it could probe potential explanations of the event excess observed in XENON1T. We also provide a detailed study on the dependence of the sensitivity on the experimental setup assumptions and on the neutrino flux systematic uncertainties.