Do you want to publish a course? Click here

(216) Kleopatra, a low density critically rotating M-type asteroid

155   0   0.0 ( 0 )
 Added by Josef Hanu\\v{s}
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of 5 g.cm$^{-3}$. Such a high density implies a high metal content and a low porosity which is not easy to reconcile with its peculiar dumbbell shape. Aims. Given the unprecedented angular resolution of the VLT/SPHERE/ZIMPOL camera, we aim to constrain the mass and the shape of Kleopatra with high accuracy, hence its density. Methods. We combined our new VLT/SPHERE observations of Kleopatra recorded in 2017 and 2018 with archival data, as well as lightcurve, occultation, and delay-Doppler images, to derive its 3D shape model using two different algorithms (ADAM, MPCD). Furthermore, an N-body dynamical model allowed us to retrieve the orbital elements of the two moons as explained in the accompanying paper. Results. The shape of Kleopatra is very close to an equilibrium dumbbell figure with two lobes and a thick neck. Its volume equivalent diameter (118.75$pm$1.40) km and mass (2.97$pm$0.32) 10$^{18}$ kg imply a bulk density of (3.38$pm$0.50) g cm$^{-3}$. Such a low density for a supposedly metal-rich body indicates a substantial porosity within the primary. This porous structure along with its near-equilibrium shape is compatible with a formation scenario including a giant impact followed by reaccumulation. Kleopatras current rotation period and dumbbell shape imply that it is in a critically rotating state. The low effective gravity along the equator of the body, together with the equatorial orbits of the moons and possibly rubble-pile structure, opens the possibility that the moons formed via mass shedding. Conclusions. Kleopatra is a puzzling multiple system due to the unique characteristics of the primary. It deserves particular attention in the future, with the Extremely Large Telescopes and possibly a dedicated space mission.



rate research

Read More

113 - M. Brov{z} , F. Marchis , L. Jorda 2021
To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons, orbiting an extremely irregular body and including their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants. Consequently, we use a modified $N$-body integrator, which was significantly extended to include the multipole expansion of the gravitational field up to the order $ell = 10$. Its convergence was verified against the `brute-force algorithm. We computed the coefficients $C_{ell m},S_{!ell m}$ for Kleopatras shape, assuming a~constant bulk density. For solar-system applications, it was also necessary to implement a variable distance and geometry of observations. Our $chi^2$ metric then accounts for the absolute astrometry, the relative astrometry (2nd moon with respect to 1st), angular velocities, and also silhouettes, constraining the pole orientation. This allowed us to derive the orbital elements of Kleopatras two moons. Using both archival astrometric data and new VLT/SPHERE observations (ESO LP 199.C-0074), we were able to identify the true periods of the moons, $P_1 = (1.822359pm0.004156),{rm d}$, $P_2 = (2.745820pm0.004820),{rm d}$. They orbit very close to the 3:2 mean-motion resonance, but their osculating eccentricities are too small compared to other perturbations (multipole, mutual), so that regular librations of the critical argument are not present. The resulting mass of Kleopatra, $m_1 = (1.49pm0.16)cdot10^{-12},M_odot$ or $2.97cdot10^{18},{rm kg}$, is significantly lower than previously thought. An implication explained in the accompanying paper (Marchis et al.) is that (216) Kleopatra is a critically rotating body.
The asteroid (16) Psyche is of scientific interest because it contains ~ 1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7-2.5 microns) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ~ 0.92 to 0.94 microns. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth were also observed, with values ranging from 1.0 to 1.5%. Using a new laboratory spectral calibration we estimated an average orthopyroxene content of 6+/-1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for spectral slope and the minimum band depth. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.
From a set of adaptive optics (AO) observations collected with the W.M. Keck telescope between August and September 2009, we derived the orbital parameters of the most recently discovered satellites of the large C-type asteroid (93) Minerva. The satellites of Minerva, which are approximately 3 and 4 km in diameter, orbit very close to the primary $sim$5 & $sim$8 $times$ Rp and $sim$1% & $sim$2% $times$ RHill) in a circular manner, sharing common characteristics with most of the triple asteroid systems in the main-belt. Combining these AO observations with lightcurve data collected since 1980 and two stellar occultations in 2010 & 2011, we removed the ambiguity of the pole solution of Minervas primary and showed that it has an almost regular shape with an equivalent diameter Deq = 154 $pm$ 6 km in agreement with IRAS observations. The surprisingly high bulk density of 1.75 $pm$ 0.30 g/cm$^3$ for this C-type asteroid, suggests that this taxonomic class is composed of asteroids with different compositions, For instance, Minerva could be made of the same material as dry CR, CO, and CV meteorites. We discuss possible scenarios on the origin of the system and conclude that future observations may shine light on the nature and composition of this fifth known triple main-belt asteroid.
We present near-infrared spectroscopy of the sporadically active asteroid (6478) Gault collected on the 3 m NASA/Infrared Telescope Facility observatory in late 2019 March/early April. Long-exposure imaging with the 0.5 m NEEMO T05 telescope and previously published data simultaneously monitored the asteroid activity, providing context for our measurements. We confirm Gault is a silicate-rich (Q- or S-type) object likely linked to the (25) Phocaea collisional family. The asteroid exhibits substantial spectral variability over the 0.75-2.45 $mu$m wavelength range, from unusual blue (s=-13.5+/-1.1% $mu$m-1 to typical red (s=+9.1+/-1.2% $mu$m-1) spectral slope, that does not seem to correlate with activity. Spectral comparisons with samples of ordinary chondrite meteorites suggest that the blue color relates to the partial loss of the asteroid dust regolith, exposing a fresh, dust-free material at its surface. The existence of asteroids rotating close to rotational break-up limit and having similar spectral properties as Gault further supports this interpretation. Future spectroscopic observations of Gault, when the tails dissipate, will help further testing of our proposed hypothesis.
Small near-Earth asteroids (>20 meters) are interesting because they are progenitors for meteorites in our terrestrial collection. Crucial to our understanding of the effectiveness of our atmosphere in filtering low-strength impactors is the physical characteristics of these small near-Earth asteroids (NEAs). In the past, characterization of small NEAs has been a challenge because of the difficulty in detecting them prior to close Earth flyby. In this study we physically characterized the 2-meter diameter near-Earth asteroid 2015 TC25 using ground-based optical, near-infrared and radar assets during a close flyby of the Earth (distance 69,000 miles) in Oct. 2015. Our observations suggest that its surface composition is similar to aubrites, a rare class of high albedo differentiated meteorites. Aubrites make up only 0.14 % of all know meteorites in our terrestrial meteorite collection. 2015 TC25 is also a very fast rotator with a rotation period of 133 seconds. We compared spectral and dynamical properties of 2015 TC25 and found the best candidate source body in the inner main belt to be the 70-km diameter E-type asteroid (44) Nysa. We attribute difference in spectral slope between the two objects to the lack of regolith on the surface of 2015 TC25. Using the albedo of E-type asteroids (50-60%) we refine the diameter of 2015 TC25 to 2-meters making it one of the smallest NEA ever to be characterized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا