Do you want to publish a course? Click here

Pulsating subdwarf B stars observed with K2 during Campaign 7 and an examination of seismic group-properties

233   0   0.0 ( 0 )
 Added by M. D. Reed
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of four new pulsating subdwarf B (sdBV) stars from Campaign 7 of the Kepler spacecrafts K2 mission. EPICs 215776487, 217280630, 218366972, and 218717602 are all gravity (g)-mode pulsators and we also detect two pressure (p)-mode pulsations in EPIC 218717602. We detect asymptotic l=1 sequences in all four stars, allowing us to identify nearly all of the g modes. We detect evenly-spaced frequency multiplets in EPIC 218717602, from which we determine a rotation period near seven days. Spectroscopic observations determine that EPIC 218366972, is in a 5.92d binary with most likely a white dwarf companion of canonical mass while the others have no detected companions. As we detect no multiplets in EPIC 218366972, it is added to the growing list of subsynchronously rotating stars. With 40 Kepler-detected sdBV stars and a growing number of TESS publications, we update an examination of the group properties to provide direction for models. We notice a correlation between effective temperature and period of maximum pulsation amplitude, at least for g-mode pulsations, and update the previously-observed effective temperature-rotation period relation.



rate research

Read More

Diffusion of atoms can be important during quiescent phases of stellar evolution. Particularly in the very thin inert envelopes of subdwarf B stars, diffusive movements will considerably change the envelope structure and the surface abundances on a short timescale. Also, the subdwarfs will inherit the effects of diffusion in their direct progenitors, namely giants near the tip of the red giant branch. This will influence the global evolution and the pulsational properties of subdwarf B stars. We investigate the impact of gravitational settling, thermal diffusion and concentration diffusion on the evolution and pulsations of subdwarf B stars. Our diffusive stellar models are compared with models evolved without diffusion. We constructed subdwarf B models with a mass of 0.465 Msun from a 1 and 3 Msun ZAMS progenitor. The low mass star ignited helium in an energetic flash, while the intermediate mass star started helium fusion gently. For each progenitor type we computed series with and without atomic diffusion. Atomic diffusion in red giants causes the helium core mass at the onset of helium ignition to be larger. We find an increase of 0.0015 Msun for the 1 Msun model and 0.0036 Msun for the 3 Msun model. The effects on the red giant surface abundances are small after the first dredge up. The evolutionary tracks of the diffusive subdwarf B models are shifted to lower surface gravities and effective temperatures due to outward diffusion of hydrogen. This affects both the frequencies of the excited modes and the overall frequency spectrum. Especially the structure and pulsations of the post-non-degenerate sdB star are drastically altered, proving that atomic diffusion cannot be ignored in these stars.
In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time-scales of several years with two immediate observational goals: 1) determine Pdot of the pulsational periods P 2) search for signatures of substellar companions in O-C residuals due to periodic light travel time variations, which would be tracking the central stars companion-induced wobble around the center of mass. These sets of data should therefore at the same time: on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the Pdot (comparison with local evolutionary models), and on the other hand allow to investigate the preceding evolution of a target in terms of possible binary evolution by extending the otherwise unsuccessful search for companions to potentially very low masses. While timing pulsations may be an observationally expensive method to search for companions, it samples a different range of orbital parameters, inaccessible through orbital photometric effects or the radial velocity method: the latter favours massive close-in companions, whereas the timing method becomes increasingly more sensitive towards wider separations. In this paper we report on the status of the on-going observations and coherence analysis for two of the currently five targets, revealing very well-behaved pulsational characteristics in HS 0444+0458, while showing HS 0702+6043 to be more complex than previously thought.
We report a new subdwarf B (sdB) pulsator, PG1142-037, discovered during the first full-length campaign of K2, the two-gyro mission of the Kepler space telescope. Fourteen periodicities have been detected between 0.9 and 2.5 hours with amplitudes below 0.35 ppt. We have been able to associate all of the pulsations with low-degree, ell<=2 modes. Follow-up spectroscopy of PG1142 has revealed it to be in a binary with a period of 0.54 days. Phase-folding the K2 photometry reveals a two-component variation including both Doppler boosting and ellipsoidal deformation. Perhaps the most surprising and interesting result is the detection of an ellipsoidal, tidally distorted variable with no indication of rotationally-induced pulsation multiplets. This indicates that the rotation period is longer than 45 days, even though the binary period is near 13 hours.
We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree $ell$. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed $kappa$ pulsation mechanism as well as alternative theories.
We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our IRTF/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3 - M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radii (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا