No Arabic abstract
We introduce MTG, a new benchmark suite for training and evaluating multilingual text generation. It is the first and largest text generation benchmark with 120k human-annotated multi-way parallel data for three tasks (story generation, question generation, and title generation) across four languages (English, German, French, and Spanish). Based on it, we set various evaluation scenarios and make a deep analysis of several popular multilingual generation models from different aspects. Our benchmark suite will encourage the multilingualism for text generation community with more human-annotated parallel data and more diverse generation scenarios.
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and facilitate the sharing of fine-tuned open-source implementations among researchers for their work. As a consequence, this would help in improving the reproductivity and reliability of future research work in text generation.
Recent work on multilingual AMR-to-text generation has exclusively focused on data augmentation strategies that utilize silver AMR. However, this assumes a high quality of generated AMRs, potentially limiting the transferability to the target task. In this paper, we investigate different techniques for automatically generating AMR annotations, where we aim to study which source of information yields better multilingual results. Our models trained on gold AMR with silver (machine translated) sentences outperform approaches which leverage generated silver AMR. We find that combining both complementary sources of information further improves multilingual AMR-to-text generation. Our models surpass the previous state of the art for German, Italian, Spanish, and Chinese by a large margin.
The recent Text-to-Text Transfer Transformer (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent accidental translation in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.
Detecting online hate is a complex task, and low-performing models have harmful consequences when used for sensitive applications such as content moderation. Emoji-based hate is a key emerging challenge for automated detection. We present HatemojiCheck, a test suite of 3,930 short-form statements that allows us to evaluate performance on hateful language expressed with emoji. Using the test suite, we expose weaknesses in existing hate detection models. To address these weaknesses, we create the HatemojiTrain dataset using a human-and-model-in-the-loop approach. Models trained on these 5,912 adversarial examples perform substantially better at detecting emoji-based hate, while retaining strong performance on text-only hate. Both HatemojiCheck and HatemojiTrain are made publicly available.
In this work, we take the first steps towards building a universal rewriter: a model capable of rewriting text in any language to exhibit a wide variety of attributes, including styles and languages, while preserving as much of the original semantics as possible. In addition to obtaining state-of-the-art results on unsupervised translation, we also demonstrate the ability to do zero-shot sentiment transfer in non-English languages using only English exemplars for sentiment. We then show that our model is able to modify multiple attributes at once, for example adjusting both language and sentiment jointly. Finally, we show that our model is capable of performing zero-shot formality-sensitive translation.