Do you want to publish a course? Click here

Language-Independent Approach for Automatic Computation of Vowel Articulation Features in Dysarthric Speech Assessment

108   0   0.0 ( 0 )
 Added by Yuanyuan Liu Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Imprecise vowel articulation can be observed in people with Parkinsons disease (PD). Acoustic features measuring vowel articulation have been demonstrated to be effective indicators of PD in its assessment. Standard clinical vowel articulation features of vowel working space area (VSA), vowel articulation index (VAI) and formants centralization ratio (FCR), are derived the first two formants of the three corner vowels /a/, /i/ and /u/. Conventionally, manual annotation of the corner vowels from speech data is required before measuring vowel articulation. This process is time-consuming. The present work aims to reduce human effort in clinical analysis of PD speech by proposing an automatic pipeline for vowel articulation assessment. The method is based on automatic corner vowel detection using a language universal phoneme recognizer, followed by statistical analysis of the formant data. The approach removes the restrictions of prior knowledge of speaking content and the language in question. Experimental results on a Finnish PD speech corpus demonstrate the efficacy and reliability of the proposed automatic method in deriving VAI, VSA, FCR and F2i/F2u (the second formant ratio for vowels /i/ and /u/). The automatically computed parameters are shown to be highly correlated with features computed with manual annotations of corner vowels. In addition, automatically and manually computed vowel articulation features have comparable correlations with experts ratings on speech intelligibility, voice impairment and overall severity of communication disorder. Language-independence of the proposed approach is further validated on a Spanish PD database, PC-GITA, as well as on TORGO corpus of English dysarthric speech.



rate research

Read More

This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conduct experiments with finetuning on the gender-specific test subsets and. In general, we do not obtain essential WER reduction by finetuning techniques by this approach. We achieved up to ~5% lower word error rate on the male subset and 3% on the female subset if the layers in the encoder and decoder are not frozen, but the tuning is started from the last checkpoints. Moreover, we adapted our base model on the full L2 Arctic dataset of accented speech and fine-tuned it for particular speakers and male and female genders separately. The models trained on the gender subsets obtained 1-2% higher accuracy when compared to the model tuned on the whole L2 Arctic dataset. Finally, we tested the concatenation of the pretrained x-vector voice embeddings and embeddings from a conventional encoder, but its gain in accuracy is not significant.
The task of speech recognition in far-field environments is adversely affected by the reverberant artifacts that elicit as the temporal smearing of the sub-band envelopes. In this paper, we develop a neural model for speech dereverberation using the long-term sub-band envelopes of speech. The sub-band envelopes are derived using frequency domain linear prediction (FDLP) which performs an autoregressive estimation of the Hilbert envelopes. The neural dereverberation model estimates the envelope gain which when applied to reverberant signals suppresses the late reflection components in the far-field signal. The dereverberated envelopes are used for feature extraction in speech recognition. Further, the sequence of steps involved in envelope dereverberation, feature extraction and acoustic modeling for ASR can be implemented as a single neural processing pipeline which allows the joint learning of the dereverberation network and the acoustic model. Several experiments are performed on the REVERB challenge dataset, CHiME-3 dataset and VOiCES dataset. In these experiments, the joint learning of envelope dereverberation and acoustic model yields significant performance improvements over the baseline ASR system based on log-mel spectrogram as well as other past approaches for dereverberation (average relative improvements of 10-24% over the baseline system). A detailed analysis on the choice of hyper-parameters and the cost function involved in envelope dereverberation is also provided.
In this paper, we propose a deep learning (DL)-based parameter enhancement method for a mixed excitation linear prediction (MELP) speech codec in noisy communication environment. Unlike conventional speech enhancement modules that are designed to obtain clean speech signal by removing noise components before speech codec processing, the proposed method directly enhances codec parameters on either the encoder or decoder side. As the proposed method has been implemented by a small network without any additional processes required in conventional enhancement systems, e.g., time-frequency (T-F) analysis/synthesis modules, its computational complexity is very low. By enhancing the noise-corrupted codec parameters with the proposed DL framework, we achieved an enhancement system that is much simpler and faster than conventional T-F mask-based speech enhancement methods, while the quality of its performance remains similar.
The perceptual task of speech quality assessment (SQA) is a challenging task for machines to do. Objective SQA methods that rely on the availability of the corresponding clean reference have been the primary go-to approaches for SQA. Clearly, these methods fail in real-world scenarios where the ground truth clean references are not available. In recent years, non-intrusive methods that train neural networks to predict ratings or scores have attracted much attention, but they suffer from several shortcomings such as lack of robustness, reliance on labeled data for training and so on. In this work, we propose a new direction for speech quality assessment. Inspired by humans innate ability to compare and assess the quality of speech signals even when they have non-matching contents, we propose a novel framework that predicts a subjective relative quality score for the given speech signal with respect to any provided reference without using any subjective data. We show that neural networks trained using our framework produce scores that correlate well with subjective mean opinion scores (MOS) and are also competitive to methods such as DNSMOS, which explicitly relies on MOS from humans for training networks. Moreover, our method also provides a natural way to embed quality-related information in neural networks, which we show is helpful for downstream tasks such as speech enhancement.
Estimating the perceived quality of an audio signal is critical for many multimedia and audio processing systems. Providers strive to offer optimal and reliable services in order to increase the user quality of experience (QoE). In this work, we present an investigation of the applicability of neural networks for non-intrusive audio quality assessment. We propose three neural network-based approaches for mean opinion score (MOS) estimation. We compare our results to three instrumental measures: the perceptual evaluation of speech quality (PESQ), the ITU-T Recommendation P.563, and the speech-to-reverberation energy ratio. Our evaluation uses a speech dataset contaminated with convolutive and additive noise, labeled using a crowd-based QoE evaluation, evaluated with Pearson correlation with MOS labels, and mean-squared-error of the estimated MOS. Our proposed approaches outperform the aforementioned instrumental measures, with a fully connected deep neural network using Mel-frequency features providing the best correlation (0.87) and the lowest mean squared error (0.15)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا