Do you want to publish a course? Click here

End-to-End Adaptive Monte Carlo Denoising and Super-Resolution

88   0   0.0 ( 0 )
 Added by Xinyue Wei
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The classic Monte Carlo path tracing can achieve high quality rendering at the cost of heavy computation. Recent works make use of deep neural networks to accelerate this process, by improving either low-resolution or fewer-sample rendering with super-resolution or denoising neural networks in post-processing. However, denoising and super-resolution have only been considered separately in previous work. We show in this work that Monte Carlo path tracing can be further accelerated by joint super-resolution and denoising (SRD) in post-processing. This new type of joint filtering allows only a low-resolution and fewer-sample (thus noisy) image to be rendered by path tracing, which is then fed into a deep neural network to produce a high-resolution and clean image. The main contribution of this work is a new end-to-end network architecture, specifically designed for the SRD task. It contains two cascaded stages with shared components. We discover that denoising and super-resolution require very different receptive fields, a key insight that leads to the introduction of deformable convolution into the network design. Extensive experiments show that the proposed method outperforms previous methods and their variants adopted for the SRD task.



rate research

Read More

Monte Carlo path tracer renders noisy image sequences at low sampling counts. Although great progress has been made on denoising such sequences, existing methods still suffer from spatial and temporary artifacts. In this paper, we tackle the problems in Monte Carlo rendering by proposing a two-stage denoiser based on the adaptive sampling strategy. In the first stage, concurrent to adjusting samples per pixel (spp) on-the-fly, we reuse the computations to generate extra denoising kernels applying on the adaptively rendered image. Rather than a direct prediction of pixel-wise kernels, we save the overhead complexity by interpolating such kernels from a public kernel pool, which can be dynamically updated to fit input signals. In the second stage, we design the position-aware pooling and semantic alignment operators to improve spatial-temporal stability. Our method was first benchmarked on 10 synthesized scenes rendered from the Mitsuba renderer and then validated on 3 additional scenes rendered from our self-built RTX-based renderer. Our method outperforms state-of-the-art counterparts in terms of both numerical error and visual quality.
We present a deep learning approach for high resolution face completion with multiple controllable attributes (e.g., male and smiling) under arbitrary masks. Face completion entails understanding both structural meaningfulness and appearance consistency locally and globally to fill in holes whose content do not appear elsewhere in an input image. It is a challenging task with the difficulty level increasing significantly with respect to high resolution, the complexity of holes and the controllable attributes of filled-in fragments. Our system addresses the challenges by learning a fully end-to-end framework that trains generative adversarial networks (GANs) progressively from low resolution to high resolution with conditional vectors encoding controllable attributes. We design novel network architectures to exploit information across multiple scales effectively and efficiently. We introduce new loss functions encouraging sharp completion. We show that our system can complete faces with large structural and appearance variations using a single feed-forward pass of computation with mean inference time of 0.007 seconds for images at 1024 x 1024 resolution. We also perform a pilot human study that shows our approach outperforms state-of-the-art face completion methods in terms of rank analysis. The code will be released upon publication.
Monte Carlo rendering algorithms are widely used to produce photorealistic computer graphics images. However, these algorithms need to sample a substantial amount of rays per pixel to enable proper global illumination and thus require an immense amount of computation. In this paper, we present a hybrid rendering method to speed up Monte Carlo rendering algorithms. Our method first generates t
95 - Xin Liu , Yuang Li , Josh Fromm 2021
Super-resolution (SR) is a coveted image processing technique for mobile apps ranging from the basic camera apps to mobile health. Existing SR algorithms rely on deep learning models with significant memory requirements, so they have yet to be deployed on mobile devices and instead operate in the cloud to achieve feasible inference time. This shortcoming prevents existing SR methods from being used in applications that require near real-time latency. In this work, we demonstrate state-of-the-art latency and accuracy for on-device super-resolution using a novel hybrid architecture called SplitSR and a novel lightweight residual block called SplitSRBlock. The SplitSRBlock supports channel-splitting, allowing the residual blocks to retain spatial information while reducing the computation in the channel dimension. SplitSR has a hybrid design consisting of standard convolutional blocks and lightweight residual blocks, allowing people to tune SplitSR for their computational budget. We evaluate our system on a low-end ARM CPU, demonstrating both higher accuracy and up to 5 times faster inference than previous approaches. We then deploy our model onto a smartphone in an app called ZoomSR to demonstrate the first-ever instance of on-device, deep learning-based SR. We conducted a user study with 15 participants to have them assess the perceived quality of images that were post-processed by SplitSR. Relative to bilinear interpolation -- the existing standard for on-device SR -- participants showed a statistically significant preference when looking at both images (Z=-9.270, p<0.01) and text (Z=-6.486, p<0.01).
Video super-resolution aims at generating a high-resolution video from its low-resolution counterpart. With the rapid rise of deep learning, many recently proposed video super-resolution methods use convolutional neural networks in conjunction with explicit motion compensation to capitalize on statistical dependencies within and across low-resolution frames. Two common issues of such methods are noteworthy. Firstly, the quality of the final reconstructed HR video is often very sensitive to the accuracy of motion estimation. Secondly, the warp grid needed for motion compensation, which is specified by the two flow maps delineating pixel displacements in horizontal and vertical directions, tends to introduce additional errors and jeopardize the temporal consistency across video frames. To address these issues, we propose a novel dynamic local filter network to perform implicit motion estimation and compensation by employing, via locally connected layers, sample-specific and position-specific dynamic local filters that are tailored to the target pixels. We also propose a global refinement network based on ResBlock and autoencoder structures to exploit non-local correlations and enhance the spatial consistency of super-resolved frames. The experimental results demonstrate that the proposed method outperforms the state-of-the-art, and validate its strength in terms of local transformation handling, temporal consistency as well as edge sharpness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا