We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The construction is based on Birkhoff-Rott operator, and accomplished by using implicit function theorem at point vortex solutions with suitably chosen function spaces.
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes a desingularization of a pair of point vortices with equal magnitude and opposite signs. The results are obtained by using an improved vorticity method.
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1},ldots,x_{0,m})$ of the Kirchhoff-Routh function defined on $Omega^m$ corresponding to $(kappa_1,ldots, kappa_m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and are perturbations of small circles centered near $x_i$, $i=1,ldots,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces. This seems to be the first nontrivial result on the existence of stationary vortex sheets in domains.
We consider the Euler equations in ${mathbb R}^3$ expressed in vorticity form. A classical question that goes back to Helmholtz is to describe the evolution of solutions with a high concentration around a curve. The work of Da Rios in 1906 states that such a curve must evolve by the so-called binormal curvature flow. Existence of true solutions concentrated near a given curve that evolves by this law is a long-standing open question that has only been answered for the special case of a circle travelling with constant speed along its axis, the thin vortex-rings. We provide what appears to be the first rigorous construction of {em helical filaments}, associated to a translating-rotating helix. The solution is defined at all times and does not change form with time. The result generalizes to multiple similar helical filaments travelling and rotating together.
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical circular vortex filament in $mathbb{R}^3$. The construction is based on a study of solutions to the similinear elliptic problem begin{equation*} -frac{1}{r}frac{partial}{partial r}Big(frac{1}{r}frac{partialpsi^varepsilon}{partial r}Big)-frac{1}{r^2}frac{partial^2psi^varepsilon}{partial z^2}=frac{1}{varepsilon^2}left(g(psi^varepsilon)+frac{f(psi^varepsilon)}{r^2}right), end{equation*} where $f$ and $g$ are two given functions of the Stokes stream function $psi^varepsilon$, and $varepsilon>0$ is a small parameter.
In this paper, we construct new, uniformly-rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov-Schmidt reduction and a second order expansion of the reduced system.