Do you want to publish a course? Click here

GC-TTS: Few-shot Speaker Adaptation with Geometric Constraints

114   0   0.0 ( 0 )
 Added by Ji-Hoon Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Few-shot speaker adaptation is a specific Text-to-Speech (TTS) system that aims to reproduce a novel speakers voice with a few training data. While numerous attempts have been made to the few-shot speaker adaptation system, there is still a gap in terms of speaker similarity to the target speaker depending on the amount of data. To bridge the gap, we propose GC-TTS which achieves high-quality speaker adaptation with significantly improved speaker similarity. Specifically, we leverage two geometric constraints to learn discriminative speaker representations. Here, a TTS model is pre-trained for base speakers with a sufficient amount of data, and then fine-tuned for novel speakers on a few minutes of data with two geometric constraints. Two geometric constraints enable the model to extract discriminative speaker embeddings from limited data, which leads to the synthesis of intelligible speech. We discuss and verify the effectiveness of GC-TTS by comparing it with popular and essential methods. The experimental results demonstrate that GC-TTS generates high-quality speech from only a few minutes of training data, outperforming standard techniques in terms of speaker similarity to the target speaker.



rate research

Read More

We present BOFFIN TTS (Bayesian Optimization For FIne-tuning Neural Text To Speech), a novel approach for few-shot speaker adaptation. Here, the task is to fine-tune a pre-trained TTS model to mimic a new speaker using a small corpus of target utterances. We demonstrate that there does not exist a one-size-fits-all adaptation strategy, with convincing synthesis requiring a corpus-specific configuration of the hyper-parameters that control fine-tuning. By using Bayesian optimization to efficiently optimize these hyper-parameter values for a target speaker, we are able to perform adaptation with an average 30% improvement in speaker similarity over standard techniques. Results indicate, across multiple corpora, that BOFFIN TTS can learn to synthesize new speakers using less than ten minutes of audio, achieving the same naturalness as produced for the speakers used to train the base model.
In recent years, Text-To-Speech (TTS) has been used as a data augmentation technique for speech recognition to help complement inadequacies in the training data. Correspondingly, we investigate the use of a multi-speaker TTS system to synthesize speech in support of speaker recognition. In this study we focus the analysis on tasks where a relatively small number of speakers is available for training. We observe on our datasets that TTS synthesized speech improves cross-domain speaker recognition performance and can be combined effectively with multi-style training. Additionally, we explore the effectiveness of different types of text transcripts used for TTS synthesis. Results suggest that matching the textual content of the target domain is a good practice, and if that is not feasible, a transcript with a sufficiently large vocabulary is recommended.
Forensic audio analysis for speaker verification offers unique challenges due to location/scenario uncertainty and diversity mismatch between reference and naturalistic field recordings. The lack of real naturalistic forensic audio corpora with ground-truth speaker identity represents a major challenge in this field. It is also difficult to directly employ small-scale domain-specific data to train complex neural network architectures due to domain mismatch and loss in performance. Alternatively, cross-domain speaker verification for multiple acoustic environments is a challenging task which could advance research in audio forensics. In this study, we introduce a CRSS-Forensics audio dataset collected in multiple acoustic environments. We pre-train a CNN-based network using the VoxCeleb data, followed by an approach which fine-tunes part of the high-level network layers with clean speech from CRSS-Forensics. Based on this fine-tuned model, we align domain-specific distributions in the embedding space with the discrepancy loss and maximum mean discrepancy (MMD). This maintains effective performance on the clean set, while simultaneously generalizes the model to other acoustic domains. From the results, we demonstrate that diverse acoustic environments affect the speaker verification performance, and that our proposed approach of cross-domain adaptation can significantly improve the results in this scenario.
In this article, we consider the problem of few-shot learning for classification. We assume a network trained for base categories with a large number of training examples, and we aim to add novel categories to it that have only a few, e.g., one or five, training examples. This is a challenging scenario because: 1) high performance is required in both the base and novel categories; and 2) training the network for the new categories with a few training examples can contaminate the feature space trained well for the base categories. To address these challenges, we propose two geometric constraints to fine-tune the network with a few training examples. The first constraint enables features of the novel categories to cluster near the category weights, and the second maintains the weights of the novel categories far from the weights of the base categories. By applying the proposed constraints, we extract discriminative features for the novel categories while preserving the feature space learned for the base categories. Using public data sets for few-shot learning that are subsets of ImageNet, we demonstrate that the proposed method outperforms prevalent methods by a large margin.
Despite speaker verification has achieved significant performance improvement with the development of deep neural networks, domain mismatch is still a challenging problem in this field. In this study, we propose a novel framework to disentangle speaker-related and domain-specific features and apply domain adaptation on the speaker-related feature space solely. Instead of performing domain adaptation directly on the feature space where domain information is not removed, using disentanglement can efficiently boost adaptation performance. To be specific, our models input speech from the source and target domains is first encoded into different latent feature spaces. The adversarial domain adaptation is conducted on the shared speaker-related feature space to encourage the property of domain-invariance. Further, we minimize the mutual information between speaker-related and domain-specific features for both domains to enforce the disentanglement. Experimental results on the VOiCES dataset demonstrate that our proposed framework can effectively generate more speaker-discriminative and domain-invariant speaker representations with a relative 20.3% reduction of EER compared to the original ResNet-based system.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا