Do you want to publish a course? Click here

SCIDA: Self-Correction Integrated Domain Adaptation from Single- to Multi-label Aerial Images

158   0   0.0 ( 0 )
 Added by Tianze Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most publicly available datasets for image classification are with single labels, while images are inherently multi-labeled in our daily life. Such an annotation gap makes many pre-trained single-label classification models fail in practical scenarios. This annotation issue is more concerned for aerial images: Aerial data collected from sensors naturally cover a relatively large land area with multiple labels, while annotated aerial datasets, which are publicly available (e.g., UCM, AID), are single-labeled. As manually annotating multi-label aerial images would be time/labor-consuming, we propose a novel self-correction integrated domain adaptation (SCIDA) method for automatic multi-label learning. SCIDA is weakly supervised, i.e., automatically learning the multi-label image classification model from using massive, publicly available single-label images. To achieve this goal, we propose a novel Label-Wise self-Correction (LWC) module to better explore underlying label correlations. This module also makes the unsupervised domain adaptation (UDA) from single- to multi-label data possible. For model training, the proposed model only uses single-label information yet requires no prior knowledge of multi-labeled data; and it predicts labels for multi-label aerial images. In our experiments, trained with single-labeled MAI-AID-s and MAI-UCM-s datasets, the proposed model is tested directly on our collected Multi-scene Aerial Image (MAI) dataset.



rate research

Read More

Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) no explicit hypothesis label is required; 4) the shared CNN may be well pre-trained with a large-scale single-label image dataset, e.g. ImageNet; and 5) it may naturally output multi-label prediction results. Experimental results on Pascal VOC2007 and VOC2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 84.2% by HCP only and 90.3% after the fusion with our complementary result in [47] based on hand-crafted features on the VOC2012 dataset, which significantly outperforms the state-of-the-arts with a large margin of more than 7%.
Recently, deep self-training approaches emerged as a powerful solution to the unsupervised domain adaptation. The self-training scheme involves iterative processing of target data; it generates target pseudo labels and retrains the network. However, since only the confident predictions are taken as pseudo labels, existing self-training approaches inevitably produce sparse pseudo labels in practice. We see this is critical because the resulting insufficient training-signals lead to a suboptimal, error-prone model. In order to tackle this problem, we propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD. In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images. In the second phase, we perform a confidence-based easy-hard classification. For the easy samples, we now employ their full pseudo labels. For the hard ones, we instead adopt adversarial learning to enforce hard-to-easy feature alignment. To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss. We show the proposed TPLD can be easily integrated into existing self-training based approaches and improves the performance significantly. Combined with the recently proposed CRST self-training framework, we achieve new state-of-the-art results on two standard UDA benchmarks.
It is a strong prerequisite to access source data freely in many existing unsupervised domain adaptation approaches. However, source data is agnostic in many practical scenarios due to the constraints of expensive data transmission and data privacy protection. Usually, the given source domain pre-trained model is expected to optimize with only unlabeled target data, which is termed as source-free unsupervised domain adaptation. In this paper, we solve this problem from the perspective of noisy label learning, since the given pre-trained model can pre-generate noisy label for unlabeled target data via directly network inference. Under this problem modeling, incorporating self-supervised learning, we propose a novel Self-Supervised Noisy Label Learning method, which can effectively fine-tune the pre-trained model with pre-generated label as well as selfgenerated label on the fly. Extensive experiments had been conducted to validate its effectiveness. Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin. Code will be released.
Object recognition advances very rapidly these days. One challenge is to generalize existing methods to new domains, to more classes and/or to new data modalities. In order to avoid annotating one dataset for each of these new cases, one needs to combine and reuse existing datasets that may belong to different domains, have partial annotations, and/or have different data modalities. This paper treats this task as a multi-source domain adaptation and label unification (mDALU) problem and proposes a novel method for it. Our method consists of a partially-supervised adaptation stage and a fully-supervised adaptation stage. In the former, partial knowledge is transferred from multiple source domains to the target domain and fused therein. Negative transfer between unmatched label space is mitigated via three new modules: domain attention, uncertainty maximization and attention-guided adversarial alignment. In the latter, knowledge is transferred in the unified label space after a label completion process with pseudo-labels. We verify the method on three different tasks, image classification, 2D semantic image segmentation, and joint 2D-3D semantic segmentation. Extensive experiments show that our method outperforms all competing methods significantly.
State-of-the-art approaches to infer dense depth measurements from images rely on CNNs trained end-to-end on a vast amount of data. However, these approaches suffer a drastic drop in accuracy when dealing with environments much different in appearance and/or context from those observed at training time. This domain shift issue is usually addressed by fine-tuning on smaller sets of images from the target domain annotated with depth labels. Unfortunately, relying on such supervised labeling is seldom feasible in most practical settings. Therefore, we propose an unsupervised domain adaptation technique which does not require groundtruth labels. Our method relies only on image pairs and leverages on classical stereo algorithms to produce disparity measurements alongside with confidence estimators to assess upon their reliability. We propose to fine-tune both depth-from-stereo as well as depth-from-mono architectures by a novel confidence-guided loss function that handles the measured disparities as noisy labels weighted according to the estimated confidence. Extensive experimental results based on standard datasets and evaluation protocols prove that our technique can address effectively the domain shift issue with both stereo and monocular depth prediction architectures and outperforms other state-of-the-art unsupervised loss functions that may be alternatively deployed to pursue domain adaptation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا