Do you want to publish a course? Click here

SSH: A Self-Supervised Framework for Image Harmonization

177   0   0.0 ( 0 )
 Added by Yifan Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Image harmonization aims to improve the quality of image compositing by matching the appearance (eg, color tone, brightness and contrast) between foreground and background images. However, collecting large-scale annotated datasets for this task requires complex professional retouching. Instead, we propose a novel Self-Supervised Harmonization framework (SSH) that can be trained using just free natural images without being edited. We reformulate the image harmonization problem from a representation fusion perspective, which separately processes the foreground and background examples, to address the background occlusion issue. This framework design allows for a dual data augmentation method, where diverse [foreground, background, pseudo GT] triplets can be generated by cropping an image with perturbations using 3D color lookup tables (LUTs). In addition, we build a real-world harmonization dataset as carefully created by expert users, for evaluation and benchmarking purposes. Our results show that the proposed self-supervised method outperforms previous state-of-the-art methods in terms of reference metrics, visual quality, and subject user study. Code and dataset are available at url{https://github.com/VITA-Group/SSHarmonization}.



rate research

Read More

Image matting and image harmonization are two important tasks in image composition. Image matting, aiming to achieve foreground boundary details, and image harmonization, aiming to make the background compatible with the foreground, are both promising yet challenging tasks. Previous works consider optimizing these two tasks separately, which may lead to a sub-optimal solution. We propose to optimize matting and harmonization simultaneously to get better performance on both the two tasks and achieve more natural results. We propose a new Generative Adversarial (GAN) framework which optimizing the matting network and the harmonization network based on a self-attention discriminator. The discriminator is required to distinguish the natural images from different types of fake synthesis images. Extensive experiments on our constructed dataset demonstrate the effectiveness of our proposed method. Our dataset and dataset generating pipeline can be found in url{https://git.io/HaMaGAN}
When capturing images in low-light conditions, the images often suffer from low visibility, which not only degrades the visual aesthetics of images, but also significantly degenerates the performance of many computer vision algorithms. In this paper, we propose a self-supervised low-light image enhancement framework (SID-NISM), which consists of two components, a Self-supervised Image Decomposition Network (SID-Net) and a Nonlinear Illumination Saturation Mapping function (NISM). As a self-supervised network, SID-Net could decompose the given low-light image into its reflectance, illumination and noise directly without any prior training or reference image, which distinguishes it from existing supervised-learning methods greatly. Then, the decomposed illumination map will be enhanced by NISM. Having the restored illumination map, the enhancement can be achieved accordingly. Experiments on several public challenging low-light image datasets reveal that the images enhanced by SID-NISM are more natural and have less unexpected artifacts.
Recently introduced self-supervised methods for image representation learning provide on par or superior results to their fully supervised competitors, yet the corresponding efforts to explain the self-supervised approaches lag behind. Motivated by this observation, we introduce a novel visual probing framework for explaining the self-supervised models by leveraging probing tasks employed previously in natural language processing. The probing tasks require knowledge about semantic relationships between image parts. Hence, we propose a systematic approach to obtain analogs of natural language in vision, such as visual words, context, and taxonomy. Our proposal is grounded in Marrs computational theory of vision and concerns features like textures, shapes, and lines. We show the effectiveness and applicability of those analogs in the context of explaining self-supervised representations. Our key findings emphasize that relations between language and vision can serve as an effective yet intuitive tool for discovering how machine learning models work, independently of data modality. Our work opens a plethora of research pathways towards more explainable and transparent AI.
Compositing is one of the most common operations in photo editing. To generate realistic composites, the appearances of foreground and background need to be adjusted to make them compatible. Previous approaches to harmonize composites have focused on learning statistical relationships between hand-crafted appearance features of the foreground and background, which is unreliable especially when the contents in the two layers are vastly different. In this work, we propose an end-to-end deep convolutional neural network for image harmonization, which can capture both the context and semantic information of the composite images during harmonization. We also introduce an efficient way to collect large-scale and high-quality training data that can facilitate the training process. Experiments on the synthesized dataset and real composite images show that the proposed network outperforms previous state-of-the-art methods.
For artificial learning systems, continual learning over time from a stream of data is essential. The burgeoning studies on supervised continual learning have achieved great progress, while the study of catastrophic forgetting in unsupervised learning is still blank. Among unsupervised learning methods, self-supervise learning method shows tremendous potential on visual representation without any labeled data at scale. To improve the visual representation of self-supervised learning, larger and more varied data is needed. In the real world, unlabeled data is generated at all times. This circumstance provides a huge advantage for the learning of the self-supervised method. However, in the current paradigm, packing previous data and current data together and training it again is a waste of time and resources. Thus, a continual self-supervised learning method is badly needed. In this paper, we make the first attempt to implement the continual contrastive self-supervised learning by proposing a rehearsal method, which keeps a few exemplars from the previous data. Instead of directly combining saved exemplars with the current data set for training, we leverage self-supervised knowledge distillation to transfer contrastive information among previous data to the current network by mimicking similarity score distribution inferred by the old network over a set of saved exemplars. Moreover, we build an extra sample queue to assist the network to distinguish between previous and current data and prevent mutual interference while learning their own feature representation. Experimental results show that our method performs well on CIFAR100 and ImageNet-Sub. Compared with the baselines, which learning tasks without taking any technique, we improve the image classification top-1 accuracy by 1.60% on CIFAR100, 2.86% on ImageNet-Sub and 1.29% on ImageNet-Full under 10 incremental steps setting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا