Do you want to publish a course? Click here

Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

288   0   0.0 ( 0 )
 Added by Ziwei Fan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In order to model the evolution of user preference, we should learn user/item embeddings based on time-ordered item purchasing sequences, which is defined as Sequential Recommendation (SR) problem. Existing methods leverage sequential patterns to model item transitions. However, most of them ignore crucial temporal collaborative signals, which are latent in evolving user-item interactions and coexist with sequential patterns. Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging. Firstly, it is hard to simultaneously encode sequential patterns and collaborative signals. Secondly, it is non-trivial to express the temporal effects of collaborative signals. Hence, we design a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph. We propose a novel Temporal Collaborative Trans-former (TCT) layer in TGSRec, which advances the self-attention mechanism by adopting a novel collaborative attention. TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns. We propagate the information learned fromTCTlayerover the temporal graph to unify sequential patterns and temporal collaborative signals. Empirical results on five datasets show that TGSRec significantly outperforms other baselines, in average up to 22.5% and 22.1%absolute improvements in Recall@10and MRR, respectively.



rate research

Read More

133 - Zhiwei Liu , Ziwei Fan , Yu Wang 2021
Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to design effective sequence encoders, textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for textbf{A}ugmenting textbf{S}equential textbf{Re}commendation with textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on url{https://github.com/DyGRec/ASReP}.
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
306 - Ziwei Fan , Zhiwei Liu , Lei Zheng 2021
The sequential patterns within the user interactions are pivotal for representing the users preference and capturing latent relationships among items. The recent advancements of sequence modeling by Transformers advocate the community to devise more effective encoders for the sequential recommendation. Most existing sequential methods assume users are deterministic. However, item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests. This textit{stochastic characteristics} brings up a solid demand to include uncertainties in representing sequences and items. Additionally, modeling sequences and items with uncertainties expands users and items interaction spaces, thus further alleviating cold-start problems. In this work, we propose a Distribution-based Transformer for Sequential Recommendation (DT4SR), which injects uncertainties into sequential modeling. We use Elliptical Gaussian distributions to describe items and sequences with uncertainty. We describe the uncertainty in items and sequences as Elliptical Gaussian distribution. And we adopt Wasserstein distance to measure the similarity between distributions. We devise two novel Trans-formers for modeling mean and covariance, which guarantees the positive-definite property of distributions. The proposed method significantly outperforms the state-of-the-art methods. The experiments on three benchmark datasets also demonstrate its effectiveness in alleviating cold-start issues. The code is available inhttps://github.com/DyGRec/DT4SR.
Predicting users preferences based on their sequential behaviors in history is challenging and crucial for modern recommender systems. Most existing sequential recommendation algorithms focus on transitional structure among the sequential actions, but largely ignore the temporal and context information, when modeling the influence of a historical event to current prediction. In this paper, we argue that the influence from the past events on a users current action should vary over the course of time and under different context. Thus, we propose a Contextualized Temporal Attention Mechanism that learns to weigh historical actions influence on not only what action it is, but also when and how the action took place. More specifically, to dynamically calibrate the relative input dependence from the self-attention mechanism, we deploy multiple parameterized kernel functions to learn various temporal dynamics, and then use the context information to determine which of these reweighing kernels to follow for each input. In empirical evaluations on two large public recommendation datasets, our model consistently outperformed an extensive set of state-of-the-art sequential recommendation methods.
171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا