We propose a shared task on training instance selection for few-shot neural text generation. Large-scale pretrained language models have led to dramatic improvements in few-shot text generation. Nonetheless, almost all previous work simply applies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. The study of the selection strategy can help us to (1) make the most use of our annotation budget in downstream tasks and (2) better benchmark few-shot text generative models. We welcome submissions that present their selection strategies and the effects on the generation quality.
Large-scale pretrained language models have led to dramatic improvements in text generation. Impressive performance can be achieved by finetuning only on a small number of instances (few-shot setting). Nonetheless, almost all previous work simply applies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. In this work, we present a study on training instance selection in few-shot neural text generation. The selection decision is made based only on the unlabeled data so as to identify the most worthwhile data points that should be annotated under some budget of labeling cost. Based on the intuition that the few-shot training instances should be diverse and representative of the entire data distribution, we propose a simple selection strategy with K-means clustering. We show that even with the naive clustering-based approach, the generation models consistently outperform random sampling on three text generation tasks: data-to-text generation, document summarization and question generation. We hope that this work will call for more attention on this largely unexplored area.
Providing pretrained language models with simple task descriptions or prompts in natural language yields impressive few-shot results for a wide range of text classification tasks when combined with gradient-based learning from examples. In this paper, we show that the underlying idea can also be applied to text generation tasks: We adapt Pattern-Exploiting Training (PET), a recently proposed few-shot approach, for finetuning generative language models on text generation tasks. On several text summarization and headline generation datasets, our proposed variant of PET gives consistent improvements over a strong baseline in few-shot settings.
Sequence labeling is an important technique employed for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER), slot tagging for dialog systems and semantic parsing. Large-scale pre-trained language models obtain very good performance on these tasks when fine-tuned on large amounts of task-specific labeled data. However, such large-scale labeled datasets are difficult to obtain for several tasks and domains due to the high cost of human annotation as well as privacy and data access constraints for sensitive user applications. This is exacerbated for sequence labeling tasks requiring such annotations at token-level. In this work, we develop techniques to address the label scarcity challenge for neural sequence labeling models. Specifically, we develop self-training and meta-learning techniques for training neural sequence taggers with few labels. While self-training serves as an effective mechanism to learn from large amounts of unlabeled data -- meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo-labels. Extensive experiments on six benchmark datasets including two for massive multilingual NER and four slot tagging datasets for task-oriented dialog systems demonstrate the effectiveness of our method. With only 10 labeled examples for each class for each task, our method obtains 10% improvement over state-of-the-art systems demonstrating its effectiveness for the low-resource setting.
Recent advancements in data-to-text generation largely take on the form of neural end-to-end systems. Efforts have been dedicated to improving text generation systems by changing the order of training samples in a process known as curriculum learning. Past research on sequence-to-sequence learning showed that curriculum learning helps to improve both the performance and convergence speed. In this work, we delve into the same idea surrounding the training samples consisting of structured data and text pairs, where at each update, the curriculum framework selects training samples based on the models competence. Specifically, we experiment with various difficulty metrics and put forward a soft edit distance metric for ranking training samples. Our benchmarks show faster convergence speed where training time is reduced by 38.7% and performance is boosted by 4.84 BLEU.
Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics.
Ernie Chang
,Xiaoyu Shen
,Alex Marin
.
(2021)
.
"The SelectGen Challenge: Finding the Best Training Samples for Few-Shot Neural Text Generation"
.
Ernie Chang
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا