Do you want to publish a course? Click here

High-dimensional Assisted Generative Model for Color Image Restoration

101   0   0.0 ( 0 )
 Added by Qiegen Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This work presents an unsupervised deep learning scheme that exploiting high-dimensional assisted score-based generative model for color image restoration tasks. Considering that the sample number and internal dimension in score-based generative model have key influence on estimating the gradients of data distribution, two different high-dimensional ways are proposed: The channel-copy transformation increases the sample number and the pixel-scale transformation decreases feasible space dimension. Subsequently, a set of high-dimensional tensors represented by these transformations are used to train the network through denoising score matching. Then, sampling is performed by annealing Langevin dynamics and alternative data-consistency update. Furthermore, to alleviate the difficulty of learning high-dimensional representation, a progressive strategy is proposed to leverage the performance. The proposed unsupervised learning and iterative restoration algo-rithm, which involves a pre-trained generative network to obtain prior, has transparent and clear interpretation compared to other data-driven approaches. Experimental results on demosaicking and inpainting conveyed the remarkable performance and diversity of our proposed method.

rate research

Read More

175 - Yi Gu , Yuting Gao , Jie Li 2020
Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way, distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.
We extensively study how to combine Generative Adversarial Networks and learned compression to obtain a state-of-the-art generative lossy compression system. In particular, we investigate normalization layers, generator and discriminator architectures, training strategies, as well as perceptual losses. In contrast to previous work, i) we obtain visually pleasing reconstructions that are perceptually similar to the input, ii) we operate in a broad range of bitrates, and iii) our approach can be applied to high-resolution images. We bridge the gap between rate-distortion-perception theory and practice by evaluating our approach both quantitatively with various perceptual metrics, and with a user study. The study shows that our method is preferred to previous approaches even if they use more than 2x the bitrate.
Deep learning networks are being developed in every stage of the MRI workflow and have provided state-of-the-art results. However, this has come at the cost of increased computation requirement and storage. Hence, replacing the networks with compact models at various stages in the MRI workflow can significantly reduce the required storage space and provide considerable speedup. In computer vision, knowledge distillation is a commonly used method for model compression. In our work, we propose a knowledge distillation (KD) framework for the image to image problems in the MRI workflow in order to develop compact, low-parameter models without a significant drop in performance. We propose a combination of the attention-based feature distillation method and imitation loss and demonstrate its effectiveness on the popular MRI reconstruction architecture, DC-CNN. We conduct extensive experiments using Cardiac, Brain, and Knee MRI datasets for 4x, 5x and 8x accelerations. We observed that the student network trained with the assistance of the teacher using our proposed KD framework provided significant improvement over the student network trained without assistance across all the datasets and acceleration factors. Specifically, for the Knee dataset, the student network achieves $65%$ parameter reduction, 2x faster CPU running time, and 1.5x faster GPU running time compared to the teacher. Furthermore, we compare our attention-based feature distillation method with other feature distillation methods. We also conduct an ablative study to understand the significance of attention-based distillation and imitation loss. We also extend our KD framework for MRI super-resolution and show encouraging results.
Deep neural networks (DNNs) have achieved significant success in image restoration tasks by directly learning a powerful non-linear mapping from corrupted images to their latent clean ones. However, there still exist two major limitations for these deep learning (DL)-based methods. Firstly, the noises contained in real corrupted images are very complex, usually neglected and largely under-estimated in most current methods. Secondly, existing DL methods are mostly trained on one pre-assumed degradation process for all of the training image pairs, such as the widely used bicubic downsampling assumption in the image super-resolution task, inevitably leading to poor generalization performance when the true degradation does not match with such assumed one. To address these issues, we propose a unified generative model for the image restoration, which elaborately configures the degradation process from the latent clean image to the observed corrupted one. Specifically, different from most of current methods, the pixel-wisely non-i.i.d. Gaussian distribution, being with more flexibility, is adopted in our method to fit the complex real noises. Furthermore, the method is built on the general image degradation process, making it capable of adapting diverse degradations under one single model. Besides, we design a variational inference algorithm to learn all parameters involved in the proposed model with explicit form of objective loss. Specifically, beyond traditional variational methodology, two DNNs are employed to parameterize the posteriori distributions, one to infer the distribution of the latent clean image, and another to infer the distribution of the image noise. Extensive experiments demonstrate the superiority of the proposed method on three classical image restoration tasks, including image denoising, image super-resolution and JPEG image deblocking.
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast deep learning framework called Bringing the Lightness (denoted as BLNet) that consists of two U-Nets with a series of well-designed loss functions to tackle all of the above degradations. Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination and remove noise in the reflectance during the decomposition phase. We propose a Noise and Color Bias Control module (NCBC Module) that contains a convolutional neural network and two loss functions (noise loss and color loss). This module is only used to calculate the loss functions during the training phase, so our method is very fast during the test phase. This module can smooth the reflectance to achieve the purpose of noise removal while preserving details and edge information and controlling color bias. We propose a network that can be trained to learn the mapping between low-light and normal-light illumination and enhance the brightness of images taken in low-light illumination. We train and evaluate the performance of our proposed model over the real-world Low-Light (LOL) dataset), and we also test our model over several other frequently used datasets (LIME, DICM and MEF datasets). We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization and outperforms many other state-of-the-art methods qualitatively and quantitatively. Our method achieves high speed because we use loss functions instead of introducing additional denoisers for noise removal and color correction. The code and model are available at https://github.com/weixinxu666/BLNet.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا