Waveform Design and Performance Analysis for Full-Duplex Integrated Sensing and Communication


Abstract in English

Integrated sensing and communication (ISAC) is a promising technology to fully utilize the precious spectrum and hardware in wireless systems, which has attracted significant attentions recently. This paper studies ISAC for the important and challenging monostatic setup, where one single ISAC node wishes to simultaneously sense a radar target while communicating with a communication receiver. Different from most existing schemes that rely on either radar-centric half-duplex (HD) pulsed transmission with information embedding that suffers from extremely low communication rate, or communication-centric waveform that suffers from degraded sensing performance, we propose a novel full-duplex (FD) ISAC scheme that utilizes the waiting time of conventional pulsed radars to transmit dedicated communication signals. Compared to radar-centric pulsed waveform with information embedding, the proposed design can drastically increase the communication rate, and also mitigate the sensing eclipsing and near-target blind range issues, as long as the self-interference (SI) is effectively suppressed. On the other hand, compared to communication-centric ISAC waveform, the proposed design has better auto-correlation property as it preserves the classic radar waveform for sensing. Performance analysis is developed by taking into account the residual SI, in terms of the probability of detection and ambiguity function for sensing, as well as the spectrum efficiency for communication. Numerical results are provided to show the significant performance gain of our proposed design over benchmark schemes.

Download