Do you want to publish a course? Click here

FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration

122   0   0.0 ( 0 )
 Added by Yu Rong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most existing monocular 3D pose estimation approaches only focus on a single body part, neglecting the fact that the essential nuance of human motion is conveyed through a concert of subtle movements of face, hands, and body. In this paper, we present FrankMocap, a fast and accurate whole-body 3D pose estimation system that can produce 3D face, hands, and body simultaneously from in-the-wild monocular images. The core idea of FrankMocap is its modular design: We first run 3D pose regression methods for face, hands, and body independently, followed by composing the regression outputs via an integration module. The separate regression modules allow us to take full advantage of their state-of-the-art performances without compromising the original accuracy and reliability in practice. We develop three different integration modules that trade off between latency and accuracy. All of them are capable of providing simple yet effective solutions to unify the separate outputs into seamless whole-body pose estimation results. We quantitatively and qualitatively demonstrate that our modularized system outperforms both the optimization-based and end-to-end methods of estimating whole-body pose.



rate research

Read More

The 3D pose estimation from a single image is a challenging problem due to depth ambiguity. One type of the previous methods lifts 2D joints, obtained by resorting to external 2D pose detectors, to the 3D space. However, this type of approaches discards the contextual information of images which are strong cues for 3D pose estimation. Meanwhile, some other methods predict the joints directly from monocular images but adopt a 2.5D output representation $P^{2.5D} = (u,v,z^{r}) $ where both $u$ and $v$ are in the image space but $z^{r}$ in root-relative 3D space. Thus, the ground-truth information (e.g., the depth of root joint from the camera) is normally utilized to transform the 2.5D output to the 3D space, which limits the applicability in practice. In this work, we propose a novel end-to-end framework that not only exploits the contextual information but also produces the output directly in the 3D space via cascaded dimension-lifting. Specifically, we decompose the task of lifting pose from 2D image space to 3D spatial space into several sequential sub-tasks, 1) kinematic skeletons & individual joints estimation in 2D space, 2) root-relative depth estimation, and 3) lifting to the 3D space, each of which employs direct supervisions and contextual image features to guide the learning process. Extensive experiments show that the proposed framework achieves state-of-the-art performance on two widely used 3D human pose datasets (Human3.6M, MuPoTS-3D).
89 - Sheng Jin , Lumin Xu , Jin Xu 2020
This paper investigates the task of 2D human whole-body pose estimation, which aims to localize dense landmarks on the entire human body including face, hands, body, and feet. As existing datasets do not have whole-body annotations, previous methods have to assemble different deep models trained independently on different datasets of the human face, hand, and body, struggling with dataset biases and large model complexity. To fill in this blank, we introduce COCO-WholeBody which extends COCO dataset with whole-body annotations. To our best knowledge, it is the first benchmark that has manual annotations on the entire human body, including 133 dense landmarks with 68 on the face, 42 on hands and 23 on the body and feet. A single-network model, named ZoomNet, is devised to take into account the hierarchical structure of the full human body to solve the scale variation of different body parts of the same person. ZoomNet is able to significantly outperform existing methods on the proposed COCO-WholeBody dataset. Extensive experiments show that COCO-WholeBody not only can be used to train deep models from scratch for whole-body pose estimation but also can serve as a powerful pre-training dataset for many different tasks such as facial landmark detection and hand keypoint estimation. The dataset is publicly available at https://github.com/jin-s13/COCO-WholeBody.
Encouraged by the success of contrastive learning on image classification tasks, we propose a new self-supervised method for the structured regression task of 3D hand pose estimation. Contrastive learning makes use of unlabeled data for the purpose of representation learning via a loss formulation that encourages the learned feature representations to be invariant under any image transformation. For 3D hand pose estimation, it too is desirable to have invariance to appearance transformation such as color jitter. However, the task requires equivariance under affine transformations, such as rotation and translation. To address this issue, we propose an equivariant contrastive objective and demonstrate its effectiveness in the context of 3D hand pose estimation. We experimentally investigate the impact of invariant and equivariant contrastive objectives and show that learning equivariant features leads to better representations for the task of 3D hand pose estimation. Furthermore, we show that standard ResNets with sufficient depth, trained on additional unlabeled data, attain improvements of up to 14.5% in PA-EPE on FreiHAND and thus achieves state-of-the-art performance without any task specific, specialized architectures. Code and models are available at https://ait.ethz.ch/projects/2021/PeCLR/
We introduce DOPE, the first method to detect and estimate whole-body 3D human poses, including bodies, hands and faces, in the wild. Achieving this level of details is key for a number of applications that require understanding the interactions of the people with each other or with the environment. The main challenge is the lack of in-the-wild data with labeled whole-body 3D poses. In previous work, training data has been annotated or generated for simpler tasks focusing on bodies, hands or faces separately. In this work, we propose to take advantage of these datasets to train independent experts for each part, namely a body, a hand and a face expert, and distill their knowledge into a single deep network designed for whole-body 2D-3D pose detection. In practice, given a training image with partial or no annotation, each part expert detects its subset of keypoints in 2D and 3D and the resulting estimations are combined to obtain whole-body pseudo ground-truth poses. A distillation loss encourages the whole-body predictions to mimic the experts outputs. Our results show that this approach significantly outperforms the same whole-body model trained without distillation while staying close to the performance of the experts. Importantly, DOPE is computationally less demanding than the ensemble of experts and can achieve real-time performance. Test code and models are available at https://europe.naverlabs.com/research/computer-vision/dope.
Monocular 3D human-pose estimation from static images is a challenging problem, due to the curse of dimensionality and the ill-posed nature of lifting 2D-to-3D. In this paper, we propose a Deep Conditional Variational Autoencoder based model that synthesizes diverse anatomically plausible 3D-pose samples conditioned on the estimated 2D-pose. We show that CVAE-based 3D-pose sample set is consistent with the 2D-pose and helps tackling the inherent ambiguity in 2D-to-3D lifting. We propose two strategies for obtaining the final 3D pose- (a) depth-ordering/ordinal relations to score and weight-average the candidate 3D-poses, referred to as OrdinalScore, and (b) with supervision from an Oracle. We report close to state of-the-art results on two benchmark datasets using OrdinalScore, and state-of-the-art results using the Oracle. We also show that our pipeline yields competitive results without paired image-to-3D annotations. The training and evaluation code is available at https://github.com/ssfootball04/generative_pose.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا