No Arabic abstract
Accumulating evidences show that the cerebral cortex is operating near a critical state featured by power-law size distribution of neural avalanche activities, yet evidence of this critical state in artificial neural networks mimicking the cerebral cortex is lacking. Here we design an artificial neural network of coupled phase oscillators and, by the technique of reservoir computing in machine learning, train it for predicting chaos. It is found that when the machine is properly trained, oscillators in the reservoir are synchronized into clusters whose sizes follow a power-law distribution. This feature, however, is absent when the machine is poorly trained. Additionally, it is found that despite the synchronization degree of the original network, once properly trained, the reservoir network is always developed to the same critical state, exemplifying the attractor nature of this state in machine learning. The generality of the results is verified in different reservoir models and by different target systems, and it is found that the scaling exponent of the distribution is independent on the reservoir details and the bifurcation parameter of the target system, but is modified when the dynamics of the target system is changed to a different type. The findings shed lights on the nature of machine learning, and are helpful to the design of high-performance machine in physical systems.
Synchronization is known to play a vital role within many highly connected neural systems such as the olfactory systems of fish and insects. In this paper we show how one can robustly and effectively perform practical computations using small perturbations to a very simple globally coupled network of coupled oscillators. Computations are performed by exploiting the spatio-temporal dynamics of a robust attracting heteroclinic network (also referred to as `winnerless competition dynamics). We use different cluster synchronization states to encode memory states and use this to design a simple multi-base counter. The simulations indicate that this gives a robust computational system exploiting the natural dynamics of the system.
Substantial evidence indicates that the brain uses principles of non-linear dynamics in neural processes, providing inspiration for computing with nanoelectronic devices. However, training neural networks composed of dynamical nanodevices requires finely controlling and tuning their coupled oscillations. In this work, we show that the outstanding tunability of spintronic nano-oscillators can solve this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the high frequency tunability of the oscillators and their mutual coupling. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with non-linear dynamical features: here, oscillations and synchronization. This demonstration is a milestone for spintronics-based neuromorphic computing.
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
We investigate a critical exponent related to synchronization transition in globally coupled nonidentical phase oscillators. The critical exponents of susceptibility, correlation time, and correlation size are significant quantities to characterize fluctuations in coupled oscillator systems of large but finite size and understand a universal property of synchronization. These exponents have been identified for the sinusoidal coupling but not fully studied for other coupling schemes. Herein, for a general coupling function including a negative second harmonic term in addition to the sinusoidal term, we numerically estimate the critical exponent of the correlation size, denoted by $ u_+$, in a synchronized regime of the system by employing a non-conventional statistical quantity. First, we confirm that the estimated value of $ u_+$ is approximately 5/2 for the sinusoidal coupling case, which is consistent with the well-known theoretical result. Second, we show that the value of $ u_+$ increases with an increase in the strength of the second harmonic term. Our result implies that the critical exponent characterizing synchronization transition largely depends on the coupling function.
Periodically driven parametric oscillators offer a convenient way to simulate classical Ising spins. When many parametric oscillators are coupled dissipatively, they can be analogous to networks of Ising spins, forming an effective coherent Ising machine (CIM) that efficiently solves computationally hard optimization problems. In the companion paper, we studied experimentally the minimal realization of a CIM, i.e. two coupled parametric oscillators [L. Bello, M. Calvanese Strinati, E. G. Dalla Torre, and A. Peer, Phys. Rev. Lett. 123, 083901 (2019)]. We found that the presence of an energy-conserving coupling between the oscillators can dramatically change the dynamics, leading to everlasting beats, which transcend the Ising description. Here, we analyze this effect theoretically by solving numerically and, when possible, analytically the equations of motion of two parametric oscillators. Our main tools include: (i) a Floquet analysis of the linear equations, (ii) a multi-scale analysis based on a separation of time scales between the parametric oscillations and the beats, and (iii) the numerical identification of limit cycles and attractors. Using these tools, we fully determine the phase boundaries and critical exponents of the model, as a function of the intensity and the phase of the coupling and of the pump. Our study highlights the universal character of the phase diagram and its independence on the specific type of nonlinearity present in the system. Furthermore, we identify new phases of the model with more than two attractors, possibly describing a larger spin algebra.