No Arabic abstract
In this work we present the results from numerical simulations of an interacting ensemble of instanton-dyons in the $SU(3)$ gauge group with $N_f=2$ flavors of massless quarks. Dynamical quarks are included via the effective interactions induced by the fermionic determinant evaluated in the subspace of topological zero modes. The eigenvalue spectrum of the Dirac operator is studied at different volumes to extract the chiral condensate and eigenvalue gap, with both observables providing consistent values of the chiral transition temperature $T_c$. We find that a sufficient density of dyons is responsible for generating the confining potential and breaking the chiral symmetry, both of which are compatible with second-order transitions.
This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density.
Finite-volume effects in Quantum Chromodynamics (QCD) have been a subject of much theoretical interest for more than two decades. They are in particular important for the analysis and interpretation of QCD simulations on a finite, discrete space-time lattice. Most of these effects are closely related to the phenomenon of spontaneous breaking of the chiral flavor symmetry and the emergence of pions as light Goldstone bosons. These long-range fluctuations are strongly affected by putting the system into a finite box, and an analysis with different methods can be organized according to the interplay between pion mass and box size. The finite volume also affects critical behavior at the chiral phase transition in QCD. In the present review, I will be mainly concerned with modeling such finite volume effects as they affect the thermodynamics of the chiral phase transition for two quark flavors. I review recent work on the analysis of finite-volume effects which makes use of the quark-meson model for dynamical chiral symmetry breaking. To account for the effects of critical long-range fluctuations close to the phase transition, most of the calculations have been performed using non-perturbative Renormalization Group (RG) methods. I give an overview over the application of these methods to a finite volume. The method, the model and the results are put into the context of related work in random matrix theory for very small volumes, chiral perturbation theory for larger volumes, and related methods and approaches. They are applied towards the analysis of finite-volume effects in lattice QCD simulations and their interpretation, mainly in the context of the chiral phase transition for two quark flavors.
We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various confinement indicators, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue $lambda_n$ such as $lambda_n^{N_t-1}$, which behaves as a reduction factor for small $lambda_n$. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities,while they are essential for chiral symmetry breaking. These relations indicate no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively, and find the similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.
Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies, we focus on back reaction on the holonomy and the issue of confinement. We calculate the free energy as a function of the holonomy and the dyon densities, using standard Metropolis Monte Carlo and integration over parameter methods. We observe that as the temperature decreases and the dyon density grows, its minimum indeed moves from small holonomy to the value corresponding to confinement. We then report various parameters of the self-consistent ensembles as a function of temperature, and investigate the role of inter-particle correlations.
We discuss the spontaneous breakdown of chiral symmetry in Quantum Chromodynamics by considering gluonic instanton configurations in the partition function. It is shown that in order to obtain nontrivial fermionic correlators in a two dimensional gauge theory for the strong interactions among quarks, a regular instanton background has to be taken into account. We work over massless quarks in the -fundamental- representation of SU(N_c). For large N_c, massive quarks are also considered.