No Arabic abstract
This paper reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults like cracks in different components aiming towards simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework seeks to address some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of rotating turbomachinery, including aero-engines. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model the cracks in a blade analytically with their effective reduced stiffness approximation. Multiple types of faults are modeled, including cracks in the blades of single and two-stage bladed disks, Fan Blade Off (FBO), and Foreign Object Damage (FOD). We have applied aero-engine operational loading conditions to simulate realistic scenarios of online health monitoring. The proposed reduced-order simulation framework will have applications in probabilistic signal modeling, machine learning toward fault signature identification, and parameter estimation with measured vibration signals.
A general-purpose computational homogenization framework is proposed for the nonlinear dynamic analysis of membranes exhibiting complex microscale and/or mesoscale heterogeneity characterized by in-plane periodicity that cannot be effectively treated by a conventional method, such as woven fabrics. The framework is a generalization of the finite element squared (or FE2) method in which a localized portion of the periodic subscale structure is modeled using finite elements. The numerical solution of displacement driven problems involving this model can be adapted to the context of membranes by a variant of the Klinkel-Govindjee method[1] originally proposed for using finite strain, three-dimensional material models in beam and shell elements. This approach relies on numerical enforcement of the plane stress constraint and is enabled by the principle of frame invariance. Computational tractability is achieved by introducing a regression-based surrogate model informed by a physics-inspired training regimen in which FE$^2$ is utilized to simulate a variety of numerical experiments including uniaxial, biaxial and shear straining of a material coupon. Several alternative surrogate models are evaluated including an artificial neural network. The framework is demonstrated and validated for a realistic Mars landing application involving supersonic inflation of a parachute canopy made of woven fabric.
In this paper, five different approaches for reduced-order modeling of brittle fracture in geomaterials, specifically concrete, are presented and compared. Four of the five methods rely on machine learning (ML) algorithms to approximate important aspects of the brittle fracture problem. In addition to the ML algorithms, each method incorporates different physics-based assumptions in order to reduce the computational complexity while maintaining the physics as much as possible. This work specifically focuses on using the ML approaches to model a 2D concrete sample under low strain rate pure tensile loading conditions with 20 preexisting cracks present. A high-fidelity finite element-discrete element model is used to both produce a training dataset of 150 simulations and an additional 35 simulations for validation. Results from the ML approaches are directly compared against the results from the high-fidelity model. Strengths and weaknesses of each approach are discussed and the most important conclusion is that a combination of physics-informed and data-driven features are necessary for emulating the physics of crack propagation, interaction and coalescence. All of the models presented here have runtimes that are orders of magnitude faster than the original high-fidelity model and pave the path for developing accurate reduced order models that could be used to inform larger length-scale models with important sub-scale physics that often cannot be accounted for due to computational cost.
In the construction of reduced-order models for dynamical systems, linear projection methods, such as proper orthogonal decompositions, are commonly employed. However, for many dynamical systems, the lower dimensional representation of the state space can most accurately be described by a textit{nonlinear} manifold. Previous research has shown that deep learning can provide an efficient method for performing nonlinear dimension reduction, though they are dependent on the availability of training data and are often problem-specific citep[see][]{carlberg_ca}. Here, we utilize randomized training data to create and train convolutional autoencoders that perform nonlinear dimension reduction for the wave and Kuramoto-Shivasinsky equations. Moreover, we present training methods that are independent of full-order model samples and use the manifold least-squares Petrov-Galerkin projection method to define a reduced-order model for the heat, wave, and Kuramoto-Shivasinsky equations using the same autoencoder.
The recently proposed generalized epidemic modeling framework (GEMF) cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algorithm for exact, continuous-time numerical simulation of GEMF-based processes. Moreover the implementation of this algorithm, GEMFsim, is available in popular scientific programming platforms such as MATLAB, R, Python, and C; GEMFsim facilitates simulating stochastic spreading models that fit in GEMF framework. Using these simulations one can examine the accuracy of mean-field-type approximations that are commonly used for analytical study of spreading processes on complex networks.
We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying conservation laws (i.e., for mass, momentum, and energy) to infer hidden quantities of interest such as velocity and pressure fields merely from spatio-temporal visualizations of a passive scaler (e.g., dye or smoke), transported in arbitrarily complex domains (e.g., in human arteries or brain aneurysms). Our approach towards solving the aforementioned data assimilation problem is unique as we design an algorithm that is agnostic to the geometry or the initial and boundary conditions. This makes HFM highly flexible in choosing the spatio-temporal domain of interest for data acquisition as well as subsequent training and predictions. Consequently, the predictions made by HFM are among those cases where a pure machine learning strategy or a mere scientific computing approach simply cannot reproduce. The proposed algorithm achieves accurate predictions of the pressure and velocity fields in both two and three dimensional flows for several benchmark problems motivated by real-world applications. Our results demonstrate that this relatively simple methodology can be used in physical and biomedical problems to extract valuable quantitative information (e.g., lift and drag forces or wall shear stresses in arteries) for which direct measurements may not be possible.