Do you want to publish a course? Click here

Is there any linkage between interstellar aldehyde and alcohol?

79   0   0.0 ( 0 )
 Added by Ankan Das
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is speculated that there might be some linkage between interstellar aldehydes and their corresponding alcohols. Here, an observational study and astrochemical modeling are coupled together to illustrate the connection between them. The ALMA Cycle 4 data of a hot molecular core, G10.47+0.03 is utilized for this study. Various aldehydes (acetaldehyde, propanal, and glycolaldehyde), alcohols (methanol and ethylene glycol), and a ketone (acetone) are identified in this source. The excitation temperatures and the column densities of these species were derived via the rotation diagram method assuming LTE conditions. An extensive investigation is carried out to understand the formation of these species. Six pairs of aldehyde-alcohol: i) methanal and methanol; ii) ethanal and ethanol; iii) propanal and 1-propanol; iv) propenal and allyl alcohol; v) propynal and propargyl alcohol; vi) glycolaldehyde and ethylene glycol; vii) along with one pair of ketone-alcohol (acetone and isopropanol) and viii) ketene-alcohol (ethenone and vinyl alcohol) are considered for this study. Two successive hydrogenation reactions in the ice phase are examined to form these alcohols from aldehydes, ketone, and ketene, respectively. Quantum chemical methods are extensively executed to review the ice phase formation route and the kinetics of these species. Based on the obtained kinetic data, astrochemical modeling is employed to derive the abundances of these aldehydes, alcohols, ketone, and ketene in this source. It is seen that our model could successfully explain the observed abundances of various species in this hot molecular core.



rate research

Read More

Magnetic monopoles have been a subject of study for more than a century since the first ideas by A. Vaschy and P. Curie, circa 1890. In 1974, Y. Nambu proposed a model for magnetic monopoles exploring a parallelism between the broken symmetry Higgs and the superconductivity Ginzburg-Landau theories in order to describe the pions quark-antiquark confinement states. There, Nambu describes an energetic string where its end points behave like two magnetic monopoles with opposite magnetic charges -- quark and antiquark. Consequently, not only the interaction among monopole and antimonopole, mediated by a massive vector boson (Yukawa potential), but also the energetic string (linear potential) contributes to the effective interaction potential. We propose here a monopole-antimonopole non confining attractive interaction of the Nambu-type, and then investigate the formation of bound states, the monopolium. Some necessary conditions for the existence of bound states to be fulfilled by the proposed Nambu-type potential, Kato weakness, Set^o and Bargmann conditions, are verified. In the following, ground state energies are estimated for a variety of monopolium reduced mass, from $10^2$MeV to $10^2$TeV, and Compton interaction lengths, from $10^{-2}$am to $10^{-1}$pm, where discussion about non relativistic and relativistic limits validation is carried out.
141 - Ken D. Olum 2012
An eternally inflating universe produces an infinite amount of spatial volume, so every possible event happens an infinite number of times, and it is impossible to define probabilities in terms of frequencies. This problem is usually addressed by means of a measure, which regulates the infinities and produces meaningful predictions. I argue that any measure should obey certain general axioms, but then give a simple toy model in which one can prove that no measure obeying the axioms exists. In certain cases of eternal inflation there are measures that obey the axioms, but all such measures appear to be unacceptable for other reasons. Thus the problem of defining sensible probabilities in eternal inflation seems not be solved.
We present a general method to identify infalling substructure in discrete datasets with position and line-of-sight velocity data. We exploit the fact that galaxies falling onto a brightest cluster galaxy (BCG) in a virialised cluster, or dwarf satellites falling onto a central galaxy like the Milky Way, follow nearly radial orbits. If the orbits are exactly radial, we show how to find the probability distribution for a satellites energy, given a tracer density for the satellite population, by solving an Abel integral equation. This is an extension of Eddington (1916)s classical formula for the isotropic distribution function. When applied to a system of galaxies, clustering in energy space can then be quantified using the Kullback-Leibler divergence, and groups of objects can be identified which, though separated in the sky, may be falling in on the same orbit. This method is tested using mock data and applied to the satellite galaxy population around M87, the BCG in Virgo, and a number of associations are found which may represent infalling galaxy groups.
115 - A. S. Hill 2018
Modern radio spectrometers make measurement of polarized intensity as a function of Faraday depth possible. I investigate the effect of depolarization along a model line of sight. I model sightlines with two components informed by observations: a diffuse interstellar medium with a lognormal electron density distribution and a narrow, denser component simulating a spiral arm or H~{sc ii} region, all with synchrotron-emitting gas mixed in. I then calculate the polarized intensity from 300-1800~MHz and calculate the resulting Faraday depth spectrum. The idealized synthetic observations show far more Faraday complexity than is observed in Global Magneto-Ionic Medium Survey observations. In a model with a very nearby H~{sc ii} region observed at low frequencies, most of the effects of a depolarization wall are evident: the H~{sc ii} region depolarizes background emission and less (but not zero) information from beyond the H~{sc ii} region reaches the observer. In other cases, the effects are not so clear, as significant amounts of information reach the observer even through significant depolarization, and it is not clear that low-frequency observations sample largely different volumes of the interstellar medium than high-frequency observations. The observed Faraday depth can be randomized such that it does not always have any correlation with the true Faraday depth.
We consider whether Broad Absorption Line Quasars (BAL QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt & Gallagher (2000) and Boroson (2002). For this purpose we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/Ledd, although BAL QSOs have slightly lower L/Ledd. BAL QSOs and NLS1s in general have high FeII/H$beta$ and low [OIII]/H$beta$ ratios following the classic Boroson & Green eigenvector 1 relation. We also found that the mass accretion rates $dot{M}$ of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 msun/year. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M-$sigma$ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample we find eigenvector 1 to correspond to the Eddington ratio L/Ledd, and eigenvector 2 to black hole mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا