Do you want to publish a course? Click here

Page-level Optimization of e-Commerce Item Recommendations

243   0   0.0 ( 0 )
 Added by Chieh Lo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The item details page (IDP) is a web page on an e-commerce website that provides information on a specific product or item listing. Just below the details of the item on this page, the buyer can usually find recommendations for other relevant items. These are typically in the form of a series of modules or carousels, with each module containing a set of recommended items. The selection and ordering of these item recommendation modules are intended to increase discover-ability of relevant items and encourage greater user engagement, while simultaneously showcasing diversity of inventory and satisfying other business objectives. Item recommendation modules on the IDP are often curated and statically configured for all customers, ignoring opportunities for personalization. In this paper, we present a scalable end-to-end production system to optimize the personalized selection and ordering of item recommendation modules on the IDP in real-time by utilizing deep neural networks. Through extensive offline experimentation and online A/B testing, we show that our proposed system achieves significantly higher click-through and conversion rates compared to other existing methods. In our online A/B test, our framework improved click-through rate by 2.48% and purchase-through rate by 7.34% over a static configuration.



rate research

Read More

Recommender systems are an essential component of e-commerce marketplaces, helping consumers navigate massive amounts of inventory and find what they need or love. In this paper, we present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space. In order to alleviate the considerable cold-start problem present in large marketplaces, item and user embeddings are computed using content features and multi-modal onsite user activity respectively. Data ablation is incorporated into the offline model training process to improve the robustness of the production system. In offline evaluation using a dataset collected from eBay traffic, our approach was able to improve the Recall@k metric over the Recently-Viewed-Item (RVI) method. This approach to generating personalized recommendations has been launched to serve production traffic, and the corresponding scalable engineering architecture is also presented. Initial A/B test results show that compared to the current personalized recommendation module in production, the proposed method increases the surface rate by $sim$6% to generate recommendations for 90% of listing page impressions.
E-commerce platforms consistently aim to provide personalized recommendations to drive user engagement, enhance overall user experience, and improve business metrics. Most e-commerce platforms contain multiple carousels on their homepage, each attempting to capture different facets of the shopping experience. Given varied user preferences, optimizing the placement of these carousels is critical for improved user satisfaction. Furthermore, items within a carousel may change dynamically based on sequential user actions, thus necessitating online ranking of carousels. In this work, we present a scalable end-to-end production system to optimally rank item-carousels in real-time on the Walmart online grocery homepage. The proposed system utilizes a novel model that captures the users affinity for different carousels and their likelihood to interact with previously unseen items. Our system is flexible in design and is easily extendable to settings where page components need to be ranked. We provide the system architecture consisting of a model development phase and an online inference framework. To ensure low-latency, various optimizations across these stages are implemented. We conducted extensive online evaluations to benchmark against the prior experience. In production, our system resulted in an improvement in item discovery, an increase in online engagement, and a significant lift on add-to-carts (ATCs) per visitor on the homepage.
85 - Jin Chen , Ju Xu , Gangwei Jiang 2021
Advertising creatives are ubiquitous in E-commerce advertisements and aesthetic creatives may improve the click-through rate (CTR) of the products. Nowadays smart advertisement platforms provide the function of compositing creatives based on source materials provided by advertisers. Since a great number of creatives can be generated, it is difficult to accurately predict their CTR given a limited amount of feedback. Factorization machine (FM), which models inner product interaction between features, can be applied for the CTR prediction of creatives. However, interactions between creative elements may be more complex than the inner product, and the FM-estimated CTR may be of high variance due to limited feedback. To address these two issues, we propose an Automated Creative Optimization (AutoCO) framework to model complex interaction between creative elements and to balance between exploration and exploitation. Specifically, motivated by AutoML, we propose one-shot search algorithms for searching effective interaction functions between elements. We then develop stochastic variational inference to estimate the posterior distribution of parameters based on the reparameterization trick, and apply Thompson Sampling for efficiently exploring potentially better creatives. We evaluate the proposed method with both a synthetic dataset and two public datasets. The experimental results show our method can outperform competing baselines with respect to cumulative regret. The online A/B test shows our method leads to a 7 increase in CTR compared to the baseline.
Recommender systems can mitigate the information overload problem by suggesting users personalized items. In real-world recommendations such as e-commerce, a typical interaction between the system and its users is -- users are recommended a page of items and provide feedback; and then the system recommends a new page of items. To effectively capture such interaction for recommendations, we need to solve two key problems -- (1) how to update recommending strategy according to users textit{real-time feedback}, and 2) how to generate a page of items with proper display, which pose tremendous challenges to traditional recommender systems. In this paper, we study the problem of page-wise recommendations aiming to address aforementioned two challenges simultaneously. In particular, we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage, which can optimize a page of items with proper display based on real-time feedback from users. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.
Category recommendation for users on an e-Commerce platform is an important task as it dictates the flow of traffic through the website. It is therefore important to surface precise and diverse category recommendations to aid the users journey through the platform and to help them discover new groups of items. An often understated part in category recommendation is users proclivity to repeat purchases. The structure of this temporal behavior can be harvested for better category recommendations and in this work, we attempt to harness this through variational inference. Further, to enhance the variational inference based optimization, we initialize the optimizer at better starting points through the well known Metapath2Vec algorithm. We demonstrate our results on two real-world datasets and show that our model outperforms standard baseline methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا