B-Spline basis Hartree-Fock method for arbitrary central potentials: atoms, clusters and electron gas


Abstract in English

An implementation of the Hartree-Fock (HF) method capable of robust convergence for well-behaved arbitrary central potentials is presented. The Hartree-Fock equations are converted to a generalized eigenvalue problem by employing a B-spline basis in a finite-size box. Convergence of the self-consistency iterations for the occupied electron orbitals is achieved by increasing the magnitude of the electron-electron Coulomb interaction gradually to its true value. For the Coulomb central potential, convergence patterns and energies are presented for a selection of atoms and negative ions, and are benchmarked against existing calculations. The present approach is also tested by calculating the ground states for an electron gas confined by a harmonic potential and also by that of uniformly charged sphere (the jellium model of alkali-metal clusters). For the harmonically confined electron-gas problem, comparisons are made with the Thomas-Fermi method and its accurate asymptotic analytical solution, with close agreement found for the electron energy and density for large electron numbers. We test the accuracy and effective completeness of the excited state manifolds by calculating the static dipole polarizabilities at the HF level and using the Random-Phase Approximation. Using the latter is crucial for the electron-gas and cluster models, where the effect of electron screening is very important. Comparisons are made for with experimental data for sodium clusters of up to $sim $100 atoms.

Download