Do you want to publish a course? Click here

Automating the Removal of Obsolete TODO Comments

149   0   0.0 ( 0 )
 Added by Zhipeng Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

TODO comments are very widely used by software developers to describe their pending tasks during software development. However, after performing the task developers sometimes neglect or simply forget to remove the TODO comment, resulting in obsolete TODO comments. These obsolete TODO comments can confuse development teams and may cause the introduction of bugs in the future, decreasing the softwares quality and maintainability. In this work, we propose a novel model, named TDCleaner (TODO comment Cleaner), to identify obsolete TODO comments in software projects. TDCleaner can assist developers in just-in-time checking of TODO comments status and avoid leaving obsolete TODO comments. Our approach has two main stages: offline learning and online prediction. During offline learning, we first automatically establish <code_change, todo_comment, commit_msg> training samples and leverage three neural encoders to capture the semantic features of TODO comment, code change and commit message respectively. TDCleaner then automatically learns the correlations and interactions between different encoders to estimate the final status of the TODO comment. For online prediction, we check a TODO comments status by leveraging the offline trained model to judge the TODO comments likelihood of being obsolete. We built our dataset by collecting TODO comments from the top-10,000 Python and Java Github repositories and evaluated TDCleaner on them. Extensive experimental results show the promising performance of our model over a set of benchmarks. We also performed an in-the-wild evaluation with real-world software projects, we reported 18 obsolete TODO comments identified by TDCleaner to Github developers and 9 of them have already been confirmed and removed by the developers, demonstrating the practical usage of our approach.



rate research

Read More

Code reviews are popular in both industrial and open source projects. The benefits of code reviews are widely recognized and include better code quality and lower likelihood of introducing bugs. However, since code review is a manual activity it comes at the cost of spending developers time on reviewing their teammates code. Our goal is to make the first step towards partially automating the code review process, thus, possibly reducing the manual costs associated with it. We focus on both the contributor and the reviewer sides of the process, by training two different Deep Learning architectures. The first one learns code changes performed by developers during real code review activities, thus providing the contributor with a revised version of her code implementing code transformations usually recommended during code review before the code is even submitted for review. The second one automatically provides the reviewer commenting on a submitted code with the revised code implementing her comments expressed in natural language. The empirical evaluation of the two models shows that, on the contributor side, the trained model succeeds in replicating the code transformations applied during code reviews in up to 16% of cases. On the reviewer side, the model can correctly implement a comment provided in natural language in up to 31% of cases. While these results are encouraging, more research is needed to make these models usable by developers.
Current research in clone detection suffers from poor ecosystems for evaluating precision of clone detection tools. Corpora of labeled clones are scarce and incomplete, making evaluation labor intensive and idiosyncratic, and limiting inter tool comparison. Precision-assessment tools are simply lacking. We present a semi-automated approach to facilitate precision studies of clone detection tools. The approach merges automatic mechanisms of clone classification with manual validation of clone pairs. We demonstrate that the proposed automatic approach has a very high precision and it significantly reduces the number of clone pairs that need human validation during precision experiments. Moreover, we aggregate the individual effort of multiple teams into a single evolving dataset of labeled clone pairs, creating an important asset for software clone research.
User experience of mobile apps is an essential ingredient that can influence the audience volumes and app revenue. To ensure good user experience and assist app development, several prior studies resort to analysis of app reviews, a type of app repository that directly reflects user opinions about the apps. Accurately responding to the app reviews is one of the ways to relieve user concerns and thus improve user experience. However, the response quality of the existing method relies on the pre-extracted features from other tools, including manually-labelled keywords and predicted review sentiment, which may hinder the generalizability and flexibility of the method. In this paper, we propose a novel end-to-end neural network approach, named CoRe, with the contextual knowledge naturally incorporated and without involving external tools. Specifically, CoRe integrates two types of contextual knowledge in the training corpus, including official app descriptions from app store and responses of the retrieved semantically similar reviews, for enhancing the relevance and accuracy of the generated review responses. Experiments on practical review data show that CoRe can outperform the state-of-the-art method by 11.53% in terms of BLEU-4, an accuracy metric that is widely used to evaluate text generation systems.
Software testing is one of the very important Quality Assurance (QA) components. A lot of researchers deal with the testing process in terms of tester motivation and how tests should or should not be written. However, it is not known from the recommendations how the tests are written in real projects. In this paper, the following was investigated: (i) the denotation of the word test in different natural languages; (ii) whether the number of occurrences of the word test correlates with the number of test cases; and (iii) what testing frameworks are mostly used. The analysis was performed on 38 GitHub open source repositories thoroughly selected from the set of 4.3M GitHub projects. We analyzed 20,340 test cases in 803 classes manually and 170k classes using an automated approach. The results show that: (i) there exists a weak correlation (r = 0.655) between the number of occurrences of the word test and the number of test cases in a class; (ii) the proposed algorithm using static file analysis correctly detected 97% of test cases; (iii) 15% of the analyzed classes used main() function whose represent regular Java programs that test the production code without using any third-party framework. The identification of such tests is very complex due to implementation diversity. The results may be leveraged to more quickly identify and locate test cases in a repository, to understand practices in customized testing solutions, and to mine tests to improve program comprehension in the future.
208 - Jiakun Liu , Qiao Huang , Xin Xia 2021
To complete tasks faster, developers often have to sacrifice the quality of the software. Such compromised practice results in the increasing burden to developers in future development. The metaphor, technical debt, describes such practice. Prior research has illustrated the negative impact of technical debt, and many researchers investigated how developers deal with a certain type of technical debt. However, few studies focused on the removal of different types of technical debt in practice. To fill this gap, we use the introduction and removal of different types of self-admitted technical debt (i.e., SATD) in 7 deep learning frameworks as an example. This is because deep learning frameworks are some of the most important software systems today due to their prevalent use in life-impacting deep learning applications. Moreover, the field of the development of different deep learning frameworks is the same, which enables us to find common behaviors on the removal of different types of technical debt across projects. By mining the file history of these frameworks, we find that design debt is introduced the most along the development process. As for the removal of technical debt, we find that requirement debt is removed the most, and design debt is removed the fastest. Most of test debt, design debt, and requirement debt are removed by the developers who introduced them. Based on the introduction and removal of different types of technical debt, we discuss the evolution of the frequencies of different types of technical debt to depict the unresolved sub-optimal trade-offs or decisions that are confronted by developers along the development process. We also discuss the removal patterns of different types of technical debt, highlight future research directions, and provide recommendations for practitioners.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا