Do you want to publish a course? Click here

Pre-burst events of gamma-ray bursts with light speed variation

168   0   0.0 ( 0 )
 Added by Bo-Qiang Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Previous researches on high-energy photon events from gamma-ray bursts~(GRBs) suggest a light speed variation $v(E)=c(1-E/E_{mathrm{LV}})$ with $E_{mathrm{LV}}=3.6times10^{17}~mathrm{ GeV}$, together with a pre-burst scenario that hight-energy photons come out about 10 seconds earlier than low-energy photons at the GRB source. However, in the Lorentz invariance violating scenario with an energy dependent light speed considered here, high-energy photons travel slower than low-energy photons due to the light speed variation, so that they are usually detected after low-energy photons in observed GRB data. Here we find four high-energy photon events which were observed earlier than low-energy photons from Fermi Gamma-ray Space Telescope~(FGST), and analysis on these photon events supports the pre-burst scenario of high energy photons from GRBs and the energy dependence of light speed listed above.



rate research

Read More

175 - Jie Zhu , Bo-Qiang Ma 2021
Previous researches on high-energy neutrino events from gamma-ray bursters (GRBs) suggest a neutrino speed variation $v(E)=c(1pm E/E^{ u}_{mathrm{LV}})$ with ${E}^{ u}_{rm LV}=(6.4pm 1.5)times10^{17}~{ rm GeV}$, together with an intrinsic time difference ${Delta {t}_{rm in}=(-2.8pm 0.7)times10^2~{rm s}}$, which means that high-energy neutrinos come out about 300~s earlier than low-energy photons in the source reference system. Considering the possibility that pre-bursts of neutrinos may be accompanied by high-energy photons, in this work we search for high-energy photon events with earlier emission time from 100 to 1000~s before low-energy photons at source by analyzing Fermi Gamma-ray Space Telescope (FGST) data. We perform the searching of photon events with energies larger than 100~MeV, and find 14 events from 48 GRBs with known redshifts. Combining these events with a $1.07~rm{TeV}$ photon event observed by the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC), we suggest a pre-burst stage with a long duration period of several minutes of high energy neutrino emissions accompanied by high energy photons at the GRB source.
We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the Gamma-ray burst polarimeter (GAP) aboard IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of $Pi = 70 pm 22$% with statistical significance of $3.7 sigma$ for GRB 110301A, and $Pi = 84^{+16}_{-28}$% with $3.3 sigma$ confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. (2011). Synchrotron emission model can be consistent with all the data of the three GRBs, while photospheric quasi-thermal emission model is not favorable. We suggest that magnetic field structures in the emission region are globally-ordered fields advected from the central engine.
We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{pm}^2=p^2 pm 2xi p^3/M_{Pl}, where pm denotes different circular polarization states of the photon, the parameter xi is constrained as |xi|<O(10^{-15}). Barring precise cancellation between quantum gravity effects and dark energy effects, the stringent limit on the CPT-violating effect leads to the expectation that quantum gravity presumably respects the CPT invariance.
218 - Yoshiki Kodama 2008
We calibrated the peak energy-peak luminosity relation of GRBs (so called Yonetoku relation) using 33 events with the redshift $z < 1.62$ without assuming any cosmological models. The luminosity distances to GRBs are estimated from those of large amount of Type Ia supernovae with $z<1.755$. This calibrated Yonetoku relation can be used as a new cosmic distance ladder toward higher redshifts. We determined the luminosity distances of 30 GRBs in $1.8 < z < 5.6$ using the calibrated relation and plotted the likelihood contour in $(Omega_m,Omega_Lambda)$ plane. We obtained $(Omega_m, Omega_{Lambda})= (0.37^{+0.14}_{-0.11}, 0.63^{+0.11}_{-0.14})$ for a flat universe. Since our method is free from the circularity problem, we can say that our universe in $1.8 < z < 5.6$ is compatible with the so called concordance cosmological model derived for $z < 1.8$. This suggests that the time variation of the dark energy is small or zero up to $zsim 6$.
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGOs fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا