We are interested in the recursive model $(Y_n, , nge 0)$ studied by Collet, Eckmann, Glaser and Martin [9] and by Derrida and Retaux [12]. We prove that at criticality, the probability ${bf P}(Y_n>0)$ behaves like $n^{-2 + o(1)}$ as $n$ goes to infinity; this gives a weaker confirmation of predictions made in [9], [12] and [6]. Our method relies on studying the number of pivotal vertices and open paths, combined with a delicate coupling argument.