No Arabic abstract
Weakly-Supervised Temporal Action Localization (WSTAL) aims to localize actions in untrimmed videos with only video-level labels. Currently, most state-of-the-art WSTAL methods follow a Multi-Instance Learning (MIL) pipeline: producing snippet-level predictions first and then aggregating to the video-level prediction. However, we argue that existing methods have overlooked two important drawbacks: 1) inadequate use of motion information and 2) the incompatibility of prevailing cross-entropy training loss. In this paper, we analyze that the motion cues behind the optical flow features are complementary informative. Inspired by this, we propose to build a context-dependent motion prior, termed as motionness. Specifically, a motion graph is introduced to model motionness based on the local motion carrier (e.g., optical flow). In addition, to highlight more informative video snippets, a motion-guided loss is proposed to modulate the network training conditioned on motionness scores. Extensive ablation studies confirm that motionness efficaciously models action-of-interest, and the motion-guided loss leads to more accurate results. Besides, our motion-guided loss is a plug-and-play loss function and is applicable with existing WSTAL methods. Without loss of generality, based on the standard MIL pipeline, our method achieves new state-of-the-art performance on three challenging benchmarks, including THUMOS14, ActivityNet v1.2 and v1.3.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the models robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak supervision, namely only video-level annotations are available during training). However, the state-of-the-art weakly-supervised TAL methods only focus on generating good Class Activation Sequence (CAS) over time but conduct simple thresholding on CAS to localize actions. In this paper, we first develop a novel weakly-supervised TAL framework called AutoLoc to directly predict the temporal boundary of each action instance. We propose a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the needed segment-level supervision for training such a boundary predictor. Our method achieves dramatically improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. It is also very encouraging to see that our weakly-supervised method achieves comparable results with some fully-supervised methods.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-classification framework, which generally adopts a selector to select snippets of high probabilities of actions or namely the foreground. Nevertheless, the existing foreground selection strategies have a major limitation of only considering the unilateral relation from foreground to actions, which cannot guarantee the foreground-action consistency. In this paper, we present a framework named FAC-Net based on the I3D backbone, on which three branches are appended, named class-wise foreground classification branch, class-agnostic attention branch and multiple instance learning branch. First, our class-wise foreground classification branch regularizes the relation between actions and foreground to maximize the foreground-background separation. Besides, the class-agnostic attention branch and multiple instance learning branch are adopted to regularize the foreground-action consistency and help to learn a meaningful foreground classifier. Within each branch, we introduce a hybrid attention mechanism, which calculates multiple attention scores for each snippet, to focus on both discriminative and less-discriminative snippets to capture the full action boundaries. Experimental results on THUMOS14 and ActivityNet1.3 demonstrate the state-of-the-art performance of our method. Our code is available at https://github.com/LeonHLJ/FAC-Net.
Weakly-supervised temporal action localization aims to localize actions in untrimmed videos with only video-level action category labels. Most of previous methods ignore the incompleteness issue of Class Activation Sequences (CAS), suffering from trivial localization results. To solve this issue, we introduce an adaptive mutual supervision framework (AMS) with two branches, where the base branch adopts CAS to localize the most discriminative action regions, while the supplementary branch localizes the less discriminative action regions through a novel adaptive sampler. The adaptive sampler dynamically updates the input of the supplementary branch with a sampling weight sequence negatively correlated with the CAS from the base branch, thereby prompting the supplementary branch to localize the action regions underestimated by the base branch. To promote mutual enhancement between these two branches, we construct mutual location supervision. Each branch leverages location pseudo-labels generated from the other branch as localization supervision. By alternately optimizing the two branches in multiple iterations, we progressively complete action regions. Extensive experiments on THUMOS14 and ActivityNet1.2 demonstrate that the proposed AMS method significantly outperforms the state-of-the-art methods.