No Arabic abstract
A plethora of applications have recently motivated extensive efforts on the generation of low noise Kerr solitons and coherent frequency combs in various platforms ranging from fiber to whispering gallery and integrated microscale resonators. However, the Kerr (cubic) nonlinearity is inherently weak, and in contrast, strong quadratic nonlinearity in optical resonators is expected to provide an alternative means for soliton formation with promising potential. Here, we demonstrate the formation of a dissipative quadratic soliton via non-stationary optical parametric amplification in the presence of significant temporal walk-off between pump and signal leading to half-harmonic generation accompanied by a substantial pulse compression (exceeding a factor of 40) at low pump pulse energies ($sim$ 4 picojoules). The bright quadratic soliton forms in a low-finesse cavity in both normal and anomalous dispersion regimes, which is in stark contrast with bright Kerr solitons. We present a route to significantly improve the performance of the demonstrated quadratic soliton when extended to an integrated nonlinear platform to realize highly-efficient extreme pulse compression leading to the formation of few-cycle soliton pulses starting from ultra-low energy picosecond scale pump pulses that are widely tunable from ultra-violet to mid-infrared spectral regimes.
We predict the existence of spatial-spectral vortex solitons in one-dimensional periodic waveguide arrays with quadratic nonlinear response. In such vortices the energy flow forms a closed loop through the simultaneous effects of phase gradients at the fundamental frequency and second-harmonic fields, and the parametric frequency conversion between the spectral components. The linear stability analysis shows that such modes are stable in a broad parameter region.
Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fiber pumped by a continuous-wave holding laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical scheme to construct stationary soliton solutions, and direct simulations to test their stability, we identify a full soliton-stability range in the space of the systems parameters, including the coefficient of the group-velocity-mismatch (GVM). The soliton stability is limited by an abrupt onset of growth of tails in the SH component, the relevant stability region being defined as that in which the energy loss to the tail generation is negligible under experimentally relevant conditions. We demonstrate that the stability domain can be readily expanded with the help of two management techniques (spatially periodic compensation of destabilizing effects) - the dispersion management (DM) and GVM management. In comparison with their counterparts in optical fibers, DM solitons in the chi^(2) medium feature very weak intrinsic oscillations.
We examine a coherently-driven, dispersion-managed, passive Kerr fiber ring resonator and report the first direct experimental observation of dispersive wave emission by temporal cavity solitons. Our observations are in excellent agreement with analytical predictions and they are fully corroborated by numerical simulations. These results lead to a better understanding of the behavior of temporal cavity solitons under conditions where higher-order dispersion plays a significant role. Significantly, since temporal cavity solitons manifest themselves in monolithic microresonators, our results are likely to explain the origins of spectral features observed in broadband Kerr frequency combs.
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.