Detecting light-induced Floquet band gaps of graphene via trARPES


Abstract in English

We propose a realistic regime to detect the light-induced topological band gap in graphene via time-resolved angle-resolved photoelectron spectroscopy (trARPES), that can be achieved with current technology. The direct observation of Floquet-Bloch bands in graphene is limited by low-mobility, Fourier-broadening, laser-assisted photoemission (LAPE), probe-pulse energy-resolution bounds, space-charge effects and more. We characterize a regime of low driving frequency and high amplitude of the circularly polarized light that induces an effective band gap at the Dirac point that exceeds the Floquet zone. This circumvents limitations due to energy resolutions and band broadening. The electron distribution across the Floquet replica in this limit allow for distinguishing LAPE replica from Floquet replica. We derive our results from a dissipative master equation approach that gives access to two-point correlation functions and the electron distribution relevant for trARPES measurements.

Download