Do you want to publish a course? Click here

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution

80   0   0.0 ( 0 )
 Added by Jingyun Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

rate research

Read More

93 - Anran Liu , Yihao Liu , Jinjin Gu 2021
Blind image super-resolution (SR), aiming to super-resolve low-resolution images with unknown degradation, has attracted increasing attention due to its significance in promoting real-world applications. Many novel and effective solutions have been proposed recently, especially with the powerful deep learning techniques. Despite years of efforts, it still remains as a challenging research problem. This paper serves as a systematic review on recent progress in blind image SR, and proposes a taxonomy to categorize existing methods into three different classes according to their ways of degradation modelling and the data used for solving the SR model. This taxonomy helps summarize and distinguish among existing methods. We hope to provide insights into current research states, as well as to reveal novel research directions worth exploring. In addition, we make a summary on commonly used datasets and previous competitions related to blind image SR. Last but not least, a comparison among different methods is provided with detailed analysis on their merits and demerits using both synthetic and real testing images.
Image super-resolution (SR) research has witnessed impressive progress thanks to the advance of convolutional neural networks (CNNs) in recent years. However, most existing SR methods are non-blind and assume that degradation has a single fixed and known distribution (e.g., bicubic) which struggle while handling degradation in real-world data that usually follows a multi-modal, spatially variant, and unknown distribution. The recent blind SR studies address this issue via degradation estimation, but they do not generalize well to multi-source degradation and cannot handle spatially variant degradation. We design CRL-SR, a contrastive representation learning network that focuses on blind SR of images with multi-modal and spatially variant distributions. CRL-SR addresses the blind SR challenges from two perspectives. The first is contrastive decoupling encoding which introduces contrastive learning to extract resolution-invariant embedding and discard resolution-variant embedding under the guidance of a bidirectional contrastive loss. The second is contrastive feature refinement which generates lost or corrupted high-frequency details under the guidance of a conditional contrastive loss. Extensive experiments on synthetic datasets and real images show that the proposed CRL-SR can handle multi-modal and spatially variant degradation effectively under blind settings and it also outperforms state-of-the-art SR methods qualitatively and quantitatively.
Deep learning-based blind super-resolution (SR) methods have recently achieved unprecedented performance in upscaling frames with unknown degradation. These models are able to accurately estimate the unknown downscaling kernel from a given low-resolution (LR) image in order to leverage the kernel during restoration. Although these approaches have largely been successful, they are predominantly image-based and therefore do not exploit the temporal properties of the kernels across multiple video frames. In this paper, we investigated the temporal properties of the kernels and highlighted its importance in the task of blind video super-resolution. Specifically, we measured the kernel temporal consistency of real-world videos and illustrated how the estimated kernels might change per frame in videos of varying dynamicity of the scene and its objects. With this new insight, we revisited previous popular video SR approaches, and showed that previous assumptions of using a fixed kernel throughout the restoration process can lead to visual artifacts when upscaling real-world videos. In order to counteract this, we tailored existing single-image and video SR techniques to leverage kernel consistency during both kernel estimation and video upscaling processes. Extensive experiments on synthetic and real-world videos show substantial restoration gains quantitatively and qualitatively, achieving the new state-of-the-art in blind video SR and underlining the potential of exploiting kernel temporal consistency.
Under stereo settings, the problem of image super-resolution (SR) and disparity estimation are interrelated that the result of each problem could help to solve the other. The effective exploitation of correspondence between different views facilitates the SR performance, while the high-resolution (HR) features with richer details benefit the correspondence estimation. According to this motivation, we propose a Stereo Super-Resolution and Disparity Estimation Feedback Network (SSRDE-FNet), which simultaneously handles the stereo image super-resolution and disparity estimation in a unified framework and interact them with each other to further improve their performance. Specifically, the SSRDE-FNet is composed of two dual recursive sub-networks for left and right views. Besides the cross-view information exploitation in the low-resolution (LR) space, HR representations produced by the SR process are utilized to perform HR disparity estimation with higher accuracy, through which the HR features can be aggregated to generate a finer SR result. Afterward, the proposed HR Disparity Information Feedback (HRDIF) mechanism delivers information carried by HR disparity back to previous layers to further refine the SR image reconstruction. Extensive experiments demonstrate the effectiveness and advancement of SSRDE-FNet.
Convolutional neural networks have allowed remarkable advances in single image super-resolution (SISR) over the last decade. Among recent advances in SISR, attention mechanisms are crucial for high-performance SR models. However, the attention mechanism remains unclear on why it works and how it works in SISR. In this work, we attempt to quantify and visualize attention mechanisms in SISR and show that not all attention modules are equally beneficial. We then propose attention in attention network (A$^2$N) for more efficient and accurate SISR. Specifically, A$^2$N consists of a non-attention branch and a coupling attention branch. A dynamic attention module is proposed to generate weights for these two branches to suppress unwanted attention adjustments dynamically, where the weights change adaptively according to the input features. This allows attention modules to specialize to beneficial examples without otherwise penalties and thus greatly improve the capacity of the attention network with few parameters overhead. Experimental results demonstrate that our final model A$^2$N could achieve superior trade-off performances comparing with state-of-the-art networks of similar sizes. Codes are available at https://github.com/haoyuc/A2N.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا