Do you want to publish a course? Click here

On the isoperimetric inequality for the magnetic Robin Laplacian with negative boundary parameter

81   0   0.0 ( 0 )
 Added by Ayman Kachmar
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider the magnetic Robin Laplacian with a negative boundary parameter. Among a certain class of domains, we prove that the disk maximizes the ground state energy under the fixed perimeter constraint provided that the magnetic field is of moderate strength. This class of domains includes, in particular, all domains that are contained upon translations in the disk of the same perimeter and all centrally symmetric domains.



rate research

Read More

Let $Omegasubsetmathbb{R}^ u$, $ uge 2$, be a $C^{1,1}$ domain whose boundary $partialOmega$ is either compact or behaves suitably at infinity. For $pin(1,infty)$ and $alpha>0$, define [ Lambda(Omega,p,alpha):=inf_{substack{uin W^{1,p}(Omega) u otequiv 0}}dfrac{displaystyle int_Omega | abla u|^p mathrm{d} x - alphadisplaystyleint_{partialOmega} |u|^pmathrm{d}sigma}{displaystyleint_Omega |u|^pmathrm{d} x}, ] where $mathrm{d}sigma$ is the surface measure on $partialOmega$. We show the asymptotics [ Lambda(Omega,p,alpha)=-(p-1)alpha^{frac{p}{p-1}} - ( u-1)H_mathrm{max}, alpha + o(alpha), quad alphato+infty, ] where $H_mathrm{max}$ is the maximum mean curvature of $partialOmega$. The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
For a bounded corner domain $Omega$, we consider the Robin Laplacian in $Omega$ with large Robin parameter. Exploiting multiscale analysis and a recursive procedure, we have a precise description of the mechanism giving the ground state of the spectrum. It allows also the study of the bottom of the essential spectrum on the associated tangent structures given by cones. Then we obtain the asymptotic behavior of the principal eigenvalue for this singular limit in any dimension, with remainder estimates. The same method works for the Schrodinger operator in $mathbb{R}^n$ with a strong attractive delta-interaction supported on $partialOmega$. Applications to some Erhlings type estimates and the analysis of the critical temperature of some superconductors are also provided.
In this work, we propose novel discretizations of the spectral fractional Laplacian on bounded domains based on the integral formulation of the operator via the heat-semigroup formalism. Specifically, we combine suitable quadrature formulas of the integral with a finite element method for the approximation of the solution of the corresponding heat equation. We derive two families of discretizations with order of convergence depending on the regularity of the domain and the function on which the spectral fractional Laplacian is acting. Our method does not require the computation of the eigenpairs of the Laplacian on the considered domain, can be implemented on possibly irregular bounded domains, and can naturally handle different types of boundary constraints. Various numerical simulations are provided to illustrate performance of the proposed method and support our theoretical results.
In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar domains admitting parallel coordinates, namely a fixed-width strip built over a smooth closed curve and the exterior of a convex set with a smooth boundary. We show that if the curve length is kept fixed, the first eigenvalue referring to the fixed-width strip is for any value of the Robin parameter maximized by a circular annulus. Furthermore, we prove that the second eigenvalue in the exterior of a convex domain $Omega$ corresponding to a negative Robin parameter does not exceed the analogous quantity for a disk whose boundary has a curvature larger than or equal to the maximum of that for $partialOmega$.
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of manifolds with the Gauss curvature bounded from above by a constant $K_circ ge 0$ and under the constraint of fixed perimeter, the geodesic disk of constant curvature $K_circ$ maximizes the lowest Robin eigenvalue. In the same geometric setting, it is proved that the spectral isoperimetric inequality holds for the lowest eigenvalue of the Dirichlet-to-Neumann operator. Finally, we adapt our methods to Robin Laplacians acting on unbounded three-dimensional cones to show that, under a constraint of fixed perimeter of the cross-section, the lowest Robin eigenvalue is maximized by the circular cone.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا