Do you want to publish a course? Click here

Nonlinear dispersion in wave-current interactions

335   0   0.0 ( 0 )
 Added by Ruiao Hu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Via a sequence of approximations of the Lagrangian in Hamiltons principle for dispersive nonlinear gravity waves we derive a hierarchy of Hamiltonian models for describing wave-current interaction (WCI) in nonlinear dispersive wave dynamics on free surfaces. A subclass of these WCI Hamiltonians admits emph{emergent singular solutions} for certain initial conditions. These singular solutions are identified with a singular momentum map for left action of the diffeomorphisms on a semidirect-product Lie algebra. This semidirect-product Lie algebra comprises vector fields representing horizontal current velocity acting on scalar functions representing wave elevation. We use computational simulations to demonstrate the dynamical interactions of the emergent wavefront trains which are admitted by this special subclass of Hamiltonians for a variety of initial conditions. In particular, we investigate: (1) A variety of localised initial current configurations in still water whose subsequent propagation generates surface-elevation dynamics on an initially flat surface; and (2) The release of initially confined configurations of surface elevation in still water that generate dynamically interacting fronts of localised currents and wave trains. The results of these simulations show intricate wave-current interaction patterns whose structures are similar to those seen, for example, in Synthetic Aperture Radar (SAR) images taken from the space shuttle.



rate research

Read More

To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynamical equations only wave modes are retained, and vortices and horizontally uniform vertical shears are excluded. Despite the simplifications, our simulations reproduce some key features of oceanic internal-wave spectra: accumulation of energy at near-inertial waves and realistic frequency and horizontal wavenumber dependencies. Furthermore, we provide evidence that formation of the energy spectra in the inertial subrange is dominated by scale-separated interactions with the near-inertial waves. These findings support oceanographers intuition that spectral energy density of internal waves is the result of predominantly wave-wave interactions.
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13-m diameter circular tank. An isotropic and statistically stationary wave turbulence of average steepness of 10% is maintained by two wedge wave makers. The space and time resolved wave elevation is measured using a stereoscopic technique. Wave-wave interactions are analyzed through third and fourth order correlations. We investigate specifically the role of bound waves generated by non resonant 3-wave coupling. Specifically, we implement a space-time filter to separate the dynamics of free waves (i.e. following the dispersion relation) from the bound waves. We observe that the free wave dynamics causes weak resonant 4-wave correlations. A weak level of correlation is actually the basis of the Weak Turbulence Theory. Thus our observations support the use of the Weak Turbulence to model gravity wave turbulence as is currently been done in the operational models of wave forecasting. Although in the theory bound waves are not supposed to contribute to the energy cascade, our observation raises the question of the impact of bound waves on dissipation and thus on energy transfers as well.
191 - Darryl D. Holm 2019
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approaches exist for approximating different aspects of WCI dynamics. These are the Generalized Lagrangian Mean (GLM) approach and the Gent--McWilliams (GM) approach. Their complementarity is evident in their Kelvin circulation theorems. GLM introduces a wave pseudomomentum per unit mass into its Kelvin circulation integrand, while GM introduces a an additional `bolus velocity to transport its Kelvin circulation loop. The GLM approach models Eulerian momentum, while the GM approach models Lagrangian transport. In principle, both GLM and GM are based on the Euler--Boussinesq (EB) equations for an incompressible, stratified, rotating flow. The differences in their Kelvin theorems arise from differences in how they model the flow map in the Lagrangian for the Hamilton variational principle underlying the EB equations. A recently developed approach for uncertainty quantification in fluid dynamics constrains fluid variational principles to require that Lagrangian trajectories undergo Stochastic Advection by Lie Transport (SALT). Here we introduce stochastic closure strategies for quantifying uncertainty in WCI by adapting the SALT approach to both the GLM and GM approximations of the EB variational principle. In the GLM framework, we introduce a stochastic group velocity for transport of wave properties, relative to the frame of motion of the Lagrangian mean flow velocity and a stochastic pressure contribution from the fluctuating kinetic energy. In the GM framework we introduce a stochastic bolus velocity in addition to the mean drift velocity by imposing the SALT constraint in the GM variational principle.
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulation of the fluid velocity on the free surface. The equations for free-surface motion we derive here are closed and they are not restricted to potential flow. Hence, true wave-current interaction dynamics can occur. In particular, the Kelvin-Noether theorem demonstrates that wave activity can induce fluid circulation and vorticity dynamics on the free surface. The wave-current interaction equations introduced here open new vistas for both the deterministic and stochastic analysis of nonlinear waves on free surfaces.
202 - Darryl D Holm 2020
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) model and the Craik--Leibovich (CL) model. The key idea for the GLM approach is the separation of the Lagrangian (fluid) and Eulerian (wave) degrees of freedom in Hamiltons principle. This is done by coupling an Euler--Poincare {it reduced Lagrangian} for the current flow and a {it phase-space Lagrangian} for the wave field. WCI in the GLM model involves the nonlinear Doppler shift in frequency of the Hamiltonian wave subsystem, which arises because the waves propagate in the frame of motion of the Lagrangian-mean velocity of the current. In contrast, WCI in the CL model arises because the fluid velocity is defined relative to the frame of motion of the Stokes mean drift velocity, which is usually taken to be prescribed, time independent and driven externally. We compare the GLM and CL theories by placing them both into the general framework of a stochastic Hamiltons principle for a 3D Euler--Boussinesq (EB) fluid in a rotating frame. In other examples, we also apply the GLM and CL methods to add wave physics and stochasticity to the familiar 1D and 2D shallow water flow models. The differences in the types of stochasticity which arise for GLM and CL models can be seen by comparing the Kelvin circulation theorems for the two models. The GLM model acquires stochasticity in its Lagrangian transport velocity for the currents and also in its group velocity for the waves. The Kelvin circulation theorem stochastic CL model can accept stochasticity in its both its integrand and in the Lagrangian transport velocity of its circulation loop.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا