Do you want to publish a course? Click here

Enhancement of in-plane anisotropy in MoS2/CoFeB bilayers

136   0   0.0 ( 0 )
 Added by Subhankar Bedanta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal dichalcogenides (TMD) possess novel properties which makes them potential candidates for various spintronic applications. Heterostructures of TMD with magnetic thin film have been extensively considered for spin-orbital torque, enhancement of perpendicular magnetic anisotropy etc. However, the effect of TMD on magnetic anisotropy in heterostructures of in-plane magnetization has not been studied so far. Further the effect of the TMD on the domain structure and magnetization reversal of the ferromagnetic system is another important aspect to be understood. In this context we study the effect of MoS2, a well-studied TMD material, on magnetic properties of CoFeB in MoS2/CoFeB heterostructures. The reference CoFeB film possess a weak in-plane anisotropy. However, when the CoFeB is deposited on MoS2 the in-plane anisotropy is enhanced as observed from magneto optic Kerr effect (MOKE) microscopy as well as ferromagnetic resonance (FMR). Magnetic domain structure and magnetization reversal have also been significantly modified for the MoS2/CoFeB bilayer as compared to the reference CoFeB layer. Frequency and angle dependent FMR measurement show that the magnetic anisotropy of CoFeB increases with increase in thickness of MoS2 in the MoS2/CoFeB heterostructures.



rate research

Read More

Describing the origin of uniaxial magnetic anisotropy (UMA) is generally problematic in systems other than single crystals. We demonstrate an in-plane UMA in amorphous CoFeB films on GaAs(001) which has the expected symmetry of the interface anisotropy in ferromagnetic films on GaAs(001), but strength which is independent of, rather than in inverse proportion to, the film thickness. We show that this volume UMA is consistent with a bond-orientational anisotropy, which propagates the interface-induced UMA through the thickness of the amorphous film. It is explained how, in general, this mechanism may describe the origin of in-plane UMAs in amorphous ferromagnetic films.
Organic semiconductor/ferromagnetic bilayer thin films can exhibit novel properties due to the formation of the spinterface at the interface. Buckminsterfullerene (C60) has been shown to exhibit ferromagnetism at the interface when it is placed next to a ferromagnet (FM) such as Fe or Co. Formation of spinterface occurs due to the orbital hybridization and spin polarized charge transfer at the interface. In this work, we have demonstrated that one can tune the magnetic anisotropy of the low Gilbert damping alloy CoFeB by introducing a C60 layer. We have shown that anisotropy is enhanced by increasing the thickness of C60 which might be a result of the formation of spinterface. However, the magnetic domain structure remains same in the bilayer samples as compared to the reference CoFeB film.
Perpendicularly magnetized spin injector with high Curie temperature is a prerequisite for developing spin optoelectronic devices on 2D materials working at room temperature (RT) with zero applied magnetic field. Here, we report the growth of Ta/CoFeB/MgO structures with a large perpendicular magnetic anisotropy (PMA) on full coverage monolayer (ML) MoS2. A large perpendicular interface anisotropy energy of 0.975mJ/m2 has been obtained at the CoFeB/MgO interface, comparable to that observed in magnetic tunnel junction systems. It is found that the insertion of MgO between the ferromagnetic metal (FM) and the 2D material can effectively prevent the diffusion of the FM atoms into the 2D material. Moreover, the MoS2 ML favors a MgO(001) texture and plays a critical role to establish the large PMA. First principle calculations on a similar Fe/MgO/MoS2 structure reveal that the MgO thickness can modify the MoS2 band structure, from an indirect bandgap with 7ML-MgO to a direct bandgap with 3ML-MgO. Proximity effect induced by Fe results in a splitting of 10meV in the valence band at the {Gamma} point for the 3ML-MgO structure while it is negligible for the 7ML-MgO structure. These results pave the way to develop RT spin optoelectronic devices on 2D transition-metal dichalcogenide materials.
Various types of defects in MoS2 monolayers and their influence on the electronic structure and transport properties have been studied using the Density-Functional based Tight-Binding method in conjunction with the Greens Function approach. Intrinsic defects in MoS2 monolayers significantly affect their electronic properties. Even at low concentration they considerably alter the quantum conductance. While the electron transport is practically isotropic in pristine MoS2, strong anisotropy is observed in the presence of defects. Localized mid-gap states are observed in semiconducting MoS2 that do not contribute to the conductivity but direction-dependent scatter the current, and that the conductivity is strongly reduced across line defects and selected grain boundary models.
High-quality epitaxial ferrites, such as low-damping MgAl-ferrite (MAFO), are promising nanoscale building blocks for all-oxide heterostructures driven by pure spin current. However, the impact of oxide interfaces on spin dynamics in such heterostructures remains an open question. Here, we investigate the spin dynamics and chemical and magnetic depth profiles of 15-nm-thick MAFO coherently interfaced with an isostructural $approx$1-8-nm-thick overlayer of paramagnetic CoCr$_2$O$_4$ (CCO) as an all-oxide model system. Compared to MAFO without an overlayer, effective Gilbert damping in MAFO/CCO is enhanced by a factor of $>$3, irrespective of the CCO overlayer thickness. We attribute this damping enhancement to spin scattering at the $sim$1-nm-thick chemically disordered layer at the MAFO/CCO interface, rather than spin pumping or proximity-induced magnetism. Our results indicate that damping in ferrite-based heterostructures is strongly influenced by interfacial chemical disorder, even if the thickness of the disordered layer is a small fraction of the ferrite thickness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا