Do you want to publish a course? Click here

Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions

224   0   0.0 ( 0 )
 Added by Yongzhi Cai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN~2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between $-11.5$ and $-14.5$ mag. Their pseudo-bolometric light curves peak in the range $0.5$ - $9.0 times10^{40}~mathrm{erg~s}^{-1}$ and their total radiated energies are on the order of (0.3 - 3) $times$~10$^{47}$~erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the $^{56}$Co decay. If the late-time power source is indeed radioactive decay, these transients produce $^{56}$Ni masses on the order of $10^{-4}$ to $10^{-3}$~msun. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km~s$^{-1}$, along with Ca~II features. In particular, the [Ca~II] $lambda$7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN~2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.

rate research

Read More

An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass $M_{rm ms}sim7-9.5M_odot$. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a CCSN. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of $1.5times10^{50}$ erg and the small $^{56}$Ni mass of $2.5times10^{-3}M_odot$, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of $Lsim2times10^{44}$ erg/s and can evaporate circumstellar dust up to $Rsim10^{17}$ cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are $Lsim10^{42}$ erg/s and $tsim60-100$ days, respectively, and that a plateau is followed by a tail with a luminosity drop by $sim4$ mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires an ECSN model with a significantly low explosion energy of $Esim10^{48}$ erg.
103 - M. D. Stritzinger 2020
We present multi-wavelength observations of two gap transients followed by the Carnegie Supernova Project-II and supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate luminosity red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within 3 days after outburst, the subsequent optical and near-infrared broadband followup extending over a $sim$2 month period, two visual- and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early ($+$28 d) to late ($+$1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that over-estimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.
In the transitional mass range ($sim$ 8-10 solar masses) between white dwarf formation and iron core-collapse supernovae, stars are expected to produce an electron-capture supernova. Theoretically, these progenitors are thought to be super-asymptotic giant branch stars with a degenerate O+Ne+Mg core, and electron capture onto Ne and Mg nuclei should initiate core collapse. However, no supernovae have unequivocally been identified from an electron-capture origin, partly because of uncertainty in theoretical predictions. Here we present six indicators of electron-capture supernovae and show that supernova 2018zd is the only known supernova having strong evidence for or consistent with all six: progenitor identification, circumstellar material, chemical composition, explosion energy, light curve, and nucleosynthesis. For supernova 2018zd, we infer a super-asymptotic giant branch progenitor based on the faint candidate in the pre-explosion images and the chemically-enriched circumstellar material revealed by the early ultraviolet colours and flash spectroscopy. The light-curve morphology and nebular emission lines can be explained with the low explosion energy and neutron-rich nucleosynthesis produced in an electron-capture supernova. This identification provides insights into the complex stellar evolution, supernova physics, cosmic nucleosynthesis, and remnant populations in the transitional mass range.
We consider black hole formation in failed supernovae when a dense circumstellar medium (CSM) is present around the massive star progenitor. By utilizing radiation hydrodynamical simulations, we calculate the mass ejection of blue supergiants and Wolf-Rayet stars in the collapsing phase and the radiative shock occurring between the ejecta and the ambient CSM. We find that the resultant emission is redder and dimmer than normal supernovae (bolometric luminosity of $sim 10^{40}-10^{41} {rm erg s^{-1}}$, effective temperature of $sim 5times 10^3$ K, and timescale of 10-100 days) and shows a characteristic power-law decay, which may comprise a fraction of intermediate luminosity red transients (ILRTs) including AT 2017be. In addition to searching for the progenitor star in the archival data, we encourage X-ray follow-up observations of such ILRTs $sim$ 1-10 yr after the collapse, targeting the fallback accretion disk.
281 - A. Summa 2017
We present the first self-consistent, three-dimensional (3D) core-collapse supernova simulations performed with the Prometheus-Vertex code for a rotating progenitor star. Besides using the angular momentum of the 15 solar-mass model as obtained in the stellar evolution calculation with an angular frequency of about 0.001 rad/s (spin period of more than 6000 s) at the Si/Si-O interface, we also computed 2D and 3D cases with no rotation and with a ~300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast rotating model develops an explosion in 3D when the Si/Si-O interface collapses through the shock. The explosion becomes possible by the support of a powerful SASI spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a two-dimensionalization of the turbulent energy spectrum (yielding roughly a -3 instead of a -5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the universal critical luminosity condition of Summa et al. (2016) to account for the effects of rotation, and demonstrate its viability for a set of more than 40 core-collapse simulations including 9 and 20 solar-mass progenitors as well as black-hole forming cases of 40 and 75 solar-mass stars to be discussed in forthcoming papers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا