Polarization control of attosecond pulses using bi-chromatic elliptically polarized laser


Abstract in English

We study the higher-harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time scale. The ellipticity or the polarization of the attosecond pulses can be tweaked by modifying the emitted harmonics ellipticity, which can be controlled by varying the driver fields. We propose a simple setup to control the polarization of the driving fields, which eventually changes the ellipticity of the attosecond pulses. A well-defined scaling law for the ellipticity of the attosecond pulse as a function of the rotation angle of the quarter-wave plate is also deduced by solving the time-dependent Schrodinger equation (TDSE) in two dimensions. The scaling law can further be explored to obtain the attosecond pulses of the desired degree of polarization, ranging from linear to elliptical to circular polarization.

Download