No Arabic abstract
The industrial machine learning pipeline requires iterating on model features, training and deploying models, and monitoring deployed models at scale. Feature stores were developed to manage and standardize the engineers workflow in this end-to-end pipeline, focusing on traditional tabular feature data. In recent years, however, model development has shifted towards using self-supervised pretrained embeddings as model features. Managing these embeddings and the downstream systems that use them introduces new challenges with respect to managing embedding training data, measuring embedding quality, and monitoring downstream models that use embeddings. These challenges are largely unaddressed in standard feature stores. Our goal in this tutorial is to introduce the feature store system and discuss the challenges and current solutions to managing these new embedding-centric pipelines.
Simplifying machine learning (ML) application development, including distributed computation, programming interface, resource management, model selection, etc, has attracted intensive interests recently. These research efforts have significantly improved the efficiency and the degree of automation of developing ML models. In this paper, we take a first step in an orthogonal direction towards automated quality management for human-in-the-loop ML application development. We build ease. ml/meter, a system that can automatically detect and measure the degree of overfitting during the whole lifecycle of ML application development. ease. ml/meter returns overfitting signals with strong probabilistic guarantees, based on which developers can take appropriate actions. In particular, ease. ml/meter provides principled guidelines to simple yet nontrivial questions regarding desired validation and test data sizes, which are among commonest questions raised by developers. The fact that ML application development is typically a continuous procedure further worsens the situation: The validation and test data sets can lose their statistical power quickly due to multiple accesses, especially in the presence of adaptive analysis. ease. ml/meter addresses these challenges by leveraging a collection of novel techniques and optimizations, resulting in practically tractable data sizes without compromising the probabilistic guarantees. We present the design and implementation details of ease. ml/meter, as well as detailed theoretical analysis and empirical evaluation of its effectiveness.
Authenticated data storage on an untrusted platform is an important computing paradigm for cloud applications ranging from big-data outsourcing, to cryptocurrency and certificate transparency log. These modern applications increasingly feature update-intensive workloads, whereas existing authenticated data structures (ADSs) designed with in-place updates are inefficient to handle such workloads. In this paper, we address this issue and propose a novel authenticated log-structured merge tree (eLSM) based key-value store by leveraging Intel SGX enclaves. We present a system design that runs the code of eLSM store inside enclave. To circumvent the limited enclave memory (128 MB with the latest Intel CPUs), we propose to place the memory buffer of the eLSM store outside the enclave and protect the buffer using a new authenticated data structure by digesting individual LSM-tree levels. We design protocols to support query authentication in data integrity, completeness (under range queries), and freshness. The proof in our protocol is made small by including only the Merkle proofs at selective levels. We implement eLSM on top of Google LevelDB and Facebook RocksDB with minimal code change and performance interference. We evaluate the performance of eLSM under the YCSB workload benchmark and show a performance advantage of up to 4.5X speedup.
Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process.
Federated learning (FL) is an emerging paradigm for facilitating multiple organizations data collaboration without revealing their private data to each other. Recently, vertical FL, where the participating organizations hold the same set of samples but with disjoint features and only one organization owns the labels, has received increased attention. This paper presents several feature inference attack methods to investigate the potential privacy leakages in the model prediction stage of vertical FL. The attack methods consider the most stringent setting that the adversary controls only the trained vertical FL model and the model predictions, relying on no background information. We first propose two specific attacks on the logistic regression (LR) and decision tree (DT) models, according to individual prediction output. We further design a general attack method based on multiple prediction outputs accumulated by the adversary to handle complex models, such as neural networks (NN) and random forest (RF) models. Experimental evaluations demonstrate the effectiveness of the proposed attacks and highlight the need for designing private mechanisms to protect the prediction outputs in vertical FL.
With the ever-increasing adoption of machine learning for data analytics, maintaining a machine learning pipeline is becoming more complex as both the datasets and trained models evolve with time. In a collaborative environment, the changes and updates due to pipeline evolution often cause cumbersome coordination and maintenance work, raising the costs and making it hard to use. Existing solutions, unfortunately, do not address the version evolution problem, especially in a collaborative environment where non-linear version control semantics are necessary to isolate operations made by different user roles. The lack of version control semantics also incurs unnecessary storage consumption and lowers efficiency due to data duplication and repeated data pre-processing, which are avoidable. In this paper, we identify two main challenges that arise during the deployment of machine learning pipelines, and address them with the design of versioning for an end-to-end analytics system MLCask. The system supports multiple user roles with the ability to perform Git-like branching and merging operations in the context of the machine learning pipelines. We define and accelerate the metric-driven merge operation by pruning the pipeline search tree using reusable history records and pipeline compatibility information. Further, we design and implement the prioritized pipeline search, which gives preference to the pipelines that probably yield better performance. The effectiveness of MLCask is evaluated through an extensive study over several real-world deployment cases. The performance evaluation shows that the proposed merge operation is up to 7.8x faster and saves up to 11.9x storage space than the baseline method that does not utilize history records.