No Arabic abstract
The realization of Kitaevs honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential realizations of fault$-$tolerant quantum computations. Over the past years, much effort was made on 4d$-$ or 5d$-$ heavy transition metal compounds because of their intrinsic strong spin$-$orbit coupling. But more recently, there have been growing shreds of evidence that the Kitaev model could also be realized in 3d$-$transition metal systems with much weaker spin$-$orbit coupling. This review intends to serve as a guide to this fast$-$developing field focusing on systems with d$^7$ transition metal occupation. It overviews the current theoretical and experimental progress on realizing the Kitaev model in those systems. We examine the recent experimental observations of candidate materials with Co$^{2+}$ ions: e.g., CoPS$_3$, Na$_3$Co$_2$SbO$_6$, and Na$_2$Co$_2$TeO$_6$, followed by a brief review of theoretical backgrounds. We conclude this article by comparing experimental observations with density functional theory (DFT) calculations. We stress the importance of inter$-t_{2g}$ hopping channels and Hunds coupling in the realization of Kitaev interactions in Co$-$based compounds, which has been overlooked in previous studies. This review suggests future directions in the search for Kitaev physics in 3d cobalt compounds and beyond.
The current efforts to find the materials hosting Kitaev model physics have been focused on Mott insulators of d^5 pseudospin-1/2 ions Ir^{4+} and Ru^{3+} with t_{2g}^5(S=1/2, L=1) electronic configuration. Here we propose that the Kitaev model can be realized in materials based on d^7 ions with t_{2g}^5e_g^2(S=3/2, L=1) configuration such as Co^{2+}, which also host the pseudospin-1/2 magnetism. Considering possible exchange processes, we have derived the d^7 pseudospin-1/2 interactions in 90^{circ} bonding geometry. The obtained Hamiltonian comprises the bond-directional Kitaev K and isotropic Heisenberg J interactions as in the case of d^5 ions. However, we find that the presence of additional, spin-active e_g electrons radically changes the balance between Kitaev and Heisenberg couplings. Most remarkably, we show that the exchange processes involving e_g spins are highly sensitive to whether the system is in Mott (U<Delta) or charge-transfer (U>Delta) insulating regime. In the latter case, to which many cobalt compounds do actually belong, the antiferromagnetic Heisenberg coupling J is strongly suppressed and spin-liquid phase can be stabilized. The results suggest cobalt-based materials as promising candidates for the realization of the Kitaev model.
We study the exchange interactions and resulting magnetic phases in the honeycomb cobaltates. For a broad range of trigonal crystal fields acting on Co2+ ions, the low-energy pseudospin-1/2 Hamiltonian is dominated by bond-dependent Ising couplings that constitute the Kitaev model. The non-Kitaev terms nearly vanish at small values of trigonal field Delta, resulting in spin liquid ground state. Considering Na3Co2SbO6 as an example, we find that this compound is proximate to a Kitaev spin liquid phase, and can be driven into it by slightly reducing Delta by sim 20 meV, e.g., via strain or pressure control. We argue that due to the more localized nature of the magnetic electrons in 3d compounds, cobaltates offer the most promising search area for Kitaev model physics.
This paper reviews the current progress on searching the Kitaev spin liquid state in 3d electron systems. Honeycomb cobaltates were recently proposed as promising candidates to realize the Kitaev spin liquid state, due to the more localized wave functions of 3d ions compared with that of 4d and 5d ions, and also the easy tunability of the exchange Hamiltonian in favor of Kitaev interaction. Several key parameters that have large impacts on the exchange constants, such as the charge-transfer gap and the trigonal crystal field, are identified and discussed. Specifically, tuning crystal field effect by means of strain or pressure is emphasized as an efficient phase control method driving the magnetically ordered cobaltates into the spin liquid state. Experimental results suggesting the existence of strong Kitaev interactions in layered honeycomb cobaltates are discussed. Finally, the future research directions are briefly outlined.
Several spin systems with low dimensionality develop a spin-dimer phase within a molecular orbital below TS, competing with long-range antiferromagnetic order. Very often, preferential orbital occupancy and ordering are the actual driving force for dimerization, as in the so-called orbitally-driven spin-Peierls compounds (MgTi2O4, CuIr2S4, La4Ru2O10, NaTiSi2O6, etc.). Through a microscopic analysis of the thermal conductivity k (T) in La4Ru2O10, we show that the orbital occupancy fluctuates rapidly above TS, resulting in an orbital-liquid state. The strong orbital-lattice coupling introduces dynamic bond-length fluctuations that scatter the phonons to produce a k (T) proportional to T (i.e. glass-like) above TS. This phonon-glass to phonon-crystal transition is shown to occur in other spin-dimer systems, like NaTiSi2O6, pointing to a general phenomenon.
There has been a great interest in magnetic field induced quantum spin liquids in Kitaev magnets after the discovery of neutron scattering continuum and half quantized thermal Hall conductivity in the material $alpha$-RuCl$_3$. In this work, we provide a semiclassical analysis of the relevant theoretical models on large system sizes, and compare the results to previous studies on quantum models with small system sizes. We find a series of competing magnetic orders with fairly large unit cells at intermediate magnetic fields, which are most likely missed by previous approaches. We show that quantum fluctuations are typically strong in these large unit cell orders, while their magnetic excitations may resemble a scattering continuum and give rise to a large thermal Hall conductivity. Our work provides an important basis for a thorough investigation of emergent spin liquids and competing phases in Kitaev magnets.