The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In this work, we investigate the effects of disorder on two types of second-order topological insulators, including a quasicrystalline quadrupole insulator and a modified quantum spin Hall insulator, in a two-dimensional Amman-Beenker tiling quasicrystalline lattice. We demonstrate that the higher-order topological insulators are robust against weak disorder in both two models. More striking, the disorder-induced higher-order topological insulators called higher-order topological Anderson insulators are found at a certain region of disorder strength in both two models. Our work extends the study of the interplay between disorder and higher-order topology to quasicrystalline systems.