Do you want to publish a course? Click here

Visualization Equilibrium

110   0   0.0 ( 0 )
 Added by Paula Kayongo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In many real-world strategic settings, people use information displays to make decisions. In these settings, an information provider chooses which information to provide to strategic agents and how to present it, and agents formulate a best response based on the information and their anticipation of how others will behave. We contribute the results of a controlled online experiment to examine how the provision and presentation of information impacts peoples decisions in a congestion game. Our experiment compares how different visualization approaches for displaying this information, including bar charts and hypothetical outcome plots, and different information conditions, including where the visualized information is private versus public (i.e., available to all agents), affect decision making and welfare. We characterize the effects of visualization anticipation, referring to changes to behavior when an agent goes from alone having access to a visualization to knowing that others also have access to the visualization to guide their decisions. We also empirically identify the visualization equilibrium, i.e., the visualization for which the visualized outcome of agents decisions matches the realized decisions of the agents who view it. We reflect on the implications of visualization equilibria and visualization anticipation for designing information displays for real-world strategic settings.



rate research

Read More

Visualization recommendation systems simplify exploratory data analysis (EDA) and make understanding data more accessible to users of all skill levels by automatically generating visualizations for users to explore. However, most existing visualization recommendation systems focus on ranking all visualizations into a single list or set of groups based on particular attributes or encodings. This global ranking makes it difficult and time-consuming for users to find the most interesting or relevant insights. To address these limitations, we introduce a novel class of visualization recommendation systems that automatically rank and recommend both groups of related insights as well as the most important insights within each group. Our proposed approach combines results from many different learning-based methods to discover insights automatically. A key advantage is that this approach generalizes to a wide variety of attribute types such as categorical, numerical, and temporal, as well as complex non-trivial combinations of these different attribute types. To evaluate the effectiveness of our approach, we implemented a new insight-centric visualization recommendation system, SpotLight, which generates and ranks annotated visualizations to explain each insight. We conducted a user study with 12 participants and two datasets which showed that users are able to quickly understand and find relevant insights in unfamiliar data.
Modern visualization tools aim to allow data analysts to easily create exploratory visualizations. When the input data layout conforms to the visualization design, users can easily specify visualizations by mapping data columns to visual channels of the design. However, when there is a mismatch between data layout and the design, users need to spend significant effort on data transformation. We propose Falx, a synthesis-powered visualization tool that allows users to specify visualizations in a similarly simple way but without needing to worry about data layout. In Falx, users specify visualizations using examples of how concrete values in the input are mapped to visual channels, and Falx automatically infers the visualization specification and transforms the data to match the design. In a study with 33 data analysts on four visualization tasks involving data transformation, we found that users can effectively adopt Falx to create visualizations they otherwise cannot implement.
Visualization, as a vibrant field for researchers, practitioners, and higher educational institutions, is growing and evolving very rapidly. Tremendous progress has been made since 1987, the year often cited as the beginning of data visualization as a distinct field. As such, the number of visualization resources and the demand for those resources are increasing at a very fast pace. We present a collection of open visualization resources for all those with an interest in interactive data visualization and visual analytics. Because the number of resources is so large, we focus on collections of resources, of which there are already very many ranging from literature collections to collections of practitioner resources. We develop a novel classification of visualization resource collections based on the resource type, e.g. literature-based, web-based, etc. The result is a helpful overview and details-on-demand of many useful resources. The collection offers a valuable jump-start for those seeking out data visualization resources from all backgrounds spanning from beginners such as students to teachers, practitioners, and researchers wishing to create their own advanced or novel visual designs.
Multivariate spatial data plays an important role in computational science and engineering simulations. The potential features and hidden relationships in multivariate data can assist scientists to gain an in-depth understanding of a scientific process, verify a hypothesis and further discover a new physical or chemical law. In this paper, we present a comprehensive survey of the state-of-the-art techniques for multivariate spatial data visualization. We first introduce the basic concept and characteristics of multivariate spatial data, and describe three main tasks in multivariate data visualization: feature classification, fusion visualization, and correlation analysis. Finally, we prospect potential research topics for multivariate data visualization according to the current research.
Background: Plant breeders are utilising an increasingly diverse range of data types in order to identify lines that have desirable characteristics which are suitable to be taken forward in plant breeding programmes. There are a number of key morphological and physiological traits such as disease resistance and yield that are required to be maintained, and improved upon if a commercial variety is to be successful. Computational tools that provide the ability to pull this data together, and integrate with pedigree structure, will enable breeders to make better decisions on which plant lines are used in crossings to meet both critical demands for increased yield/production and adaptation to climate change. Results: We have used a large and unique set of experimental barley (H. vulgare) data to develop a prototype pedigree visualization system and performed a subjective user evaluation with domain experts to guide and direct the development of an interactive pedigree visualization tool which we have called Helium. Conclusions: We show that Helium allows users to easily integrate a number of data types along with large plant pedigrees to offer an integrated environment in which they can explore pedigree data. We have also verified that users were happy with the abstract representation of pedigrees that we have used in our visualization tool.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا