Discrete-time quantum walk approach to high-dimensional quantum state transfer and quantum routing


Abstract in English

High-dimensional quantum systems can offer extended possibilities and multiple advantages while developing advanced quantum technologies. In this paper, we propose a class of quantum-walk architecture networks that admit the efficient routing of high-dimensional quantum states. Perfect state transfer of an arbitrary unknown qudit state can be achieved between two arbitrary nodes via a one-dimensional lackadaisical discrete-time quantum walk. In addition, this method can be generalized to the high-dimensional lattices, where it allows distillable entanglement to be shared between arbitrary input and output ports. Implementation of our scheme is more feasible through exploiting the coin degrees of freedom and the settings of the coin flipping operators are simple. These results provide a direct application in a high-dimensional computational architecture to process much more information.

Download