Do you want to publish a course? Click here

Machine Learning of consistent thermodynamic models using automatic differentiation

187   0   0.0 ( 0 )
 Added by David Rosenberger
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a method to describe consistent equations of state (EOS) for arbitrary systems. Complex EOS are traditionally obtained by fitting suitable analytical expressions to thermophysical data. A key aspect of EOS are that the relationships between state variables are given by derivatives of the system free energy. In this work, we model the free energy with an artificial neural network, and utilize automatic differentiation to directly learn to the derivatives of the free energy on two different data sets, the van der Waals system, and published data for the Lennard-Jones fluid. We show that this method is advantageous over direct learning of thermodynamic properties (i.e. not as derivatives of the free energy, but as independent properties), in terms of both accuracy and the exact preservation of the Maxwell relations. Furthermore, the method can implicitly solve the integration problem of computing the free energy of a system without explicit integration.



rate research

Read More

Machine learning of atomic-scale properties is revolutionizing molecular modelling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed and reliability of machine-learning potentials, however, depends strongly on the way atomic configurations are represented, i.e. the choice of descriptors used as input for the machine learning method. The raw Cartesian coordinates are typically transformed in fingerprints, or symmetry functions, that are designed to encode, in addition to the structure, important properties of the potential-energy surface like its invariances with respect to rotation, translation and permutation of like atoms. Here we discuss automatic protocols to select a number of fingerprints out of a large pool of candidates, based on the correlations that are intrinsic to the training data. This procedure can greatly simplify the construction of neural network potentials that strike the best balance between accuracy and computational efficiency, and has the potential to accelerate by orders of magnitude the evaluation of Gaussian Approximation Potentials based on the Smooth Overlap of Atomic Positions kernel. We present applications to the construction of neural network potentials for water and for an Al-Mg-Si alloy, and to the prediction of the formation energies of small organic molecules using Gaussian process regression.
The discovery of new multicomponent inorganic compounds can provide direct solutions to many scientific and engineering challenges, yet the vast size of the uncharted material space dwarfs current synthesis throughput. While the computational crystal structure prediction is expected to mitigate this frustration, the NP-hardness and steep costs of density functional theory (DFT) calculations prohibit material exploration at scale. Herein, we introduce SPINNER, a highly efficient and reliable structure-prediction framework based on exhaustive random searches and evolutionary algorithms, which is completely free from empiricism. Empowered by accurate neural network potentials, the program can navigate the configuration space faster than DFT by more than 10$^{2}$-fold. In blind tests on 60 ternary compositions diversely selected from the experimental database, SPINNER successfully identifies experimental (or theoretically more stable) phases for ~80% of materials within 5000 generations, entailing up to half a million structure evaluations for each composition. When benchmarked against previous data mining or DFT-based evolutionary predictions, SPINNER identifies more stable phases in the majority of cases. By developing a reliable and fast structure-prediction framework, this work opens the door to large-scale, unbounded computational exploration of undiscovered inorganic crystals.
Machine learning surrogate models for quantum mechanical simulations has enabled the field to efficiently and accurately study material and molecular systems. Developed models typically rely on a substantial amount of data to make reliable predictions of the potential energy landscape or careful active learning and uncertainty estimates. When starting with small datasets, convergence of active learning approaches is a major outstanding challenge which limited most demonstrations to online active learning. In this work we demonstrate a $Delta$-machine learning approach that enables stable convergence in offline active learning strategies by avoiding unphysical configurations. We demonstrate our frameworks capabilities on a structural relaxation, transition state calculation, and molecular dynamics simulation, with the number of first principle calculations being cut down anywhere from 70-90%. The approach is incorporated and developed alongside AMPtorch, an open-source machine learning potential package, along with interactive Google Colab notebook examples.
Many engineering problems involve learning hidden dynamics from indirect observations, where the physical processes are described by systems of partial differential equations (PDE). Gradient-based optimization methods are considered scalable and efficient to learn hidden dynamics. However, one of the most time-consuming and error-prone tasks is to derive and implement the gradients, especially in systems of PDEs where gradients from different systems must be correctly integrated together. To that purpose, we present a novel technique, called intelligent automatic differentiation (IAD), to leverage the modern machine learning tool $texttt{TensorFlow}$ for computing gradients automatically and conducting optimization efficiently. Moreover, IAD allows us to integrate specially designed state adjoint method codes to achieve better performance. Numerical tests demonstrate the feasibility of IAD for learning hidden dynamics in complicated systems of PDEs; additionally, by incorporating custom built state adjoint method codes in IAD, we significantly accelerate the forward and inverse simulation.
Accurate phase diagram calculation from molecular dynamics requires systematic treatment and convergence of statistical averages. In this work we propose a Gaussian process regression based framework for reconstructing the free energy functions using data of various origin. Our framework allows for propagating statistical uncertainty from finite molecular dynamics trajectories to the phase diagram and automatically performing convergence with respect to simulation parameters. Furthermore, our approach provides a way for automatic optimal sampling in the simulation parameter space based on Bayesian optimization approach. We validate our methodology by constructing phase diagrams of two model systems, the Lennard-Jones and soft-core potential, and compare the results with existing works studies and our coexistence simulations. Finally, we construct the phase diagram of lithium at temperatures above 300 K and pressures below 30 GPa from a machine-learning potential trained on ab initio data. Our approach performs well when compared to coexistence simulations and experimental results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا