Do you want to publish a course? Click here

The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data

62   0   0.0 ( 0 )
 Added by Vasileios Baltatzis
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Convolutional Neural Networks (CNNs) are widely used for image classification in a variety of fields, including medical imaging. While most studies deploy cross-entropy as the loss function in such tasks, a growing number of approaches have turned to a family of contrastive learning-based losses. Even though performance metrics such as accuracy, sensitivity and specificity are regularly used for the evaluation of CNN classifiers, the features that these classifiers actually learn are rarely identified and their effect on the classification performance on out-of-distribution test samples is insufficiently explored. In this paper, motivated by the real-world task of lung nodule classification, we investigate the features that a CNN learns when trained and tested on different distributions of a synthetic dataset with controlled modes of variation. We show that different loss functions lead to different features being learned and consequently affect the generalization ability of the classifier on unseen data. This study provides some important insights into the design of deep learning solutions for medical imaging tasks.



rate research

Read More

Using publicly available data to determine the performance of methodological contributions is important as it facilitates reproducibility and allows scrutiny of the published results. In lung nodule classification, for example, many works report results on the publicly available LIDC dataset. In theory, this should allow a direct comparison of the performance of proposed methods and assess the impact of individual contributions. When analyzing seven recent works, however, we find that each employs a different data selection process, leading to largely varying total number of samples and ratios between benign and malignant cases. As each subset will have different characteristics with varying difficulty for classification, a direct comparison between the proposed methods is thus not always possible, nor fair. We study the particular effect of truthing when aggregating labels from multiple experts. We show that specific choices can have severe impact on the data distribution where it may be possible to achieve superior performance on one sample distribution but not on another. While we show that we can further improve on the state-of-the-art on one sample selection, we also find that on a more challenging sample selection, on the same database, the more advanced models underperform with respect to very simple baseline methods, highlighting that the selected data distribution may play an even more important role than the model architecture. This raises concerns about the validity of claimed methodological contributions. We believe the community should be aware of these pitfalls and make recommendations on how these can be avoided in future work.
514 - Jie Yang , Siqi Liu , Sasa Grbic 2018
Though large-scale datasets are essential for training deep learning systems, it is expensive to scale up the collection of medical imaging datasets. Synthesizing the objects of interests, such as lung nodules, in medical images based on the distribu tion of annotated datasets can be helpful for improving the supervised learning tasks, especially when the datasets are limited by size and class balance. In this paper, we propose the class-aware adversarial synthesis framework to synthesize lung nodules in CT images. The framework is built with a coarse-to-fine patch in-painter (generator) and two class-aware discriminators. By conditioning on the random latent variables and the target nodule labels, the trained networks are able to generate diverse nodules given the same context. By evaluating on the public LIDC-IDRI dataset, we demonstrate an example application of the proposed framework for improving the accuracy of the lung nodule malignancy estimation as a binary classification problem, which is important in the lung screening scenario. We show that combining the real image patches and the synthetic lung nodules in the training set can improve the mean AUC classification score across different network architectures by 2%.
The progression of lung cancer implies the intrinsic ordinal relationship of lung nodules at different stages-from benign to unsure then to malignant. This problem can be solved by ordinal regression methods, which is between classification and regression due to its ordinal label. However, existing convolutional neural network (CNN)-based ordinal regression methods only focus on modifying classification head based on a randomly sampled mini-batch of data, ignoring the ordinal relationship resided in the data itself. In this paper, we propose a Meta Ordinal Weighting Network (MOW-Net) to explicitly align each training sample with a meta ordinal set (MOS) containing a few samples from all classes. During the training process, the MOW-Net learns a mapping from samples in MOS to the corresponding class-specific weight. In addition, we further propose a meta cross-entropy (MCE) loss to optimize the network in a meta-learning scheme. The experimental results demonstrate that the MOW-Net achieves better accuracy than the state-of-the-art ordinal regression methods, especially for the unsure class.
Face verification has come into increasing focus in various applications including the European Entry/Exit System, which integrates face recognition mechanisms. At the same time, the rapid advancement of biometric authentication requires extensive performance tests in order to inhibit the discriminatory treatment of travellers due to their demographic background. However, the use of face images collected as part of border controls is restricted by the European General Data Protection Law to be processed for no other reason than its original purpose. Therefore, this paper investigates the suitability of synthetic face images generated with StyleGAN and StyleGAN2 to compensate for the urgent lack of publicly available large-scale test data. Specifically, two deep learning-based (SER-FIQ, FaceQnet v1) and one standard-based (ISO/IEC TR 29794-5) face image quality assessment algorithm is utilized to compare the applicability of synthetic face images compared to real face images extracted from the FRGC dataset. Finally, based on the analysis of impostor score distributions and utility score distributions, our experiments reveal negligible differences between StyleGAN vs. StyleGAN2, and further also minor discrepancies compared to real face images.
Computed tomography imaging is a standard modality for detecting and assessing lung cancer. In order to evaluate the malignancy of lung nodules, clinical practice often involves expert qualitative ratings on several criteria describing a nodules appearance and shape. Translating these features for computer-aided diagnostics is challenging due to their subjective nature and the difficulties in gaining a complete description. In this paper, we propose a computerized approach to quantitatively evaluate both appearance distinctions and 3D surface variations. Nodule shape was modeled and parameterized using spherical harmonics, and appearance features were extracted using deep convolutional neural networks. Both sets of features were combined to estimate the nodule malignancy using a random forest classifier. The proposed algorithm was tested on the publicly available Lung Image Database Consortium dataset, achieving high accuracy. By providing lung nodule characterization, this method can provide a robust alternative reference opinion for lung cancer diagnosis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا