Do you want to publish a course? Click here

Distributionally robust goal-reaching optimization in the presence of background risk

112   0   0.0 ( 0 )
 Added by Zuo Quan Xu Dr.
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is non-concave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.



rate research

Read More

In this paper we develop a novel methodology for estimation of risk capital allocation. The methodology is rooted in the theory of risk measures. We work within a general, but tractable class of law-invariant coherent risk measures, with a particular focus on expected shortfall. We introduce the concept of fair capital allocations and provide explicit formulae for fair capital allocations in case when the constituents of the risky portfolio are jointly normally distributed. The main focus of the paper is on the problem of approximating fair portfolio allocations in the case of not fully known law of the portfolio constituents. We define and study the concepts of fair allocation estimators and asymptotically fair allocation estimators. A substantial part of our study is devoted to the problem of estimating fair risk allocations for expected shortfall. We study this problem under normality as well as in a nonparametric setup. We derive several estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assessing the performance of the allocation estimation procedure. The paper closes with a substantial numerical study of the subject.
We extend the classical risk minimization model with scalar risk measures to the general case of set-valued risk measures. The problem we obtain is a set-valued optimization model and we propose a goal programming-based approach with satisfaction function to obtain a solution which represents the best compromise between goals and the achievement levels. Numerical examples are provided to illustrate how the method works in practical situations.
In this paper, we show that, on classical model spaces including Orlicz spaces, every real-valued, law-invariant, coherent risk measure automatically has the Fatou property at every point whose negative part has a thin tail.
We consider a large collection of dynamically interacting components defined on a weighted directed graph determining the impact of default of one component to another one. We prove a law of large numbers for the empirical measure capturing the evolution of the different components in the pool and from this we extract important information for quantities such as the loss rate in the overall pool as well as the mean impact on a given component from system wide defaults. A singular value decomposition of the adjacency matrix of the graph allows to coarse-grain the system by focusing on the highest eigenvalues which also correspond to the components with the highest contagion impact on the pool. Numerical simulations demonstrate the theoretical findings.
The large majority of risk-sharing transactions involve few agents, each of whom can heavily influence the structure and the prices of securities. This paper proposes a game where agents strategic sets consist of all possible sharing securities and pricing kernels that are consistent with Arrow-Debreu sharing rules. First, it is shown that agents best response problems have unique solutions. The risk-sharing Nash equilibrium admits a finite-dimensional characterisation and it is proved to exist for arbitrary number of agents and be unique in the two-agent game. In equilibrium, agents declare beliefs on future random outcomes different than their actual probability assessments, and the risk-sharing securities are endogenously bounded, implying (among other things) loss of efficiency. In addition, an analysis regarding extremely risk tolerant agents indicates that they profit more from the Nash risk-sharing equilibrium as compared to the Arrow-Debreu one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا