Do you want to publish a course? Click here

A Generalizable Model-and-Data Driven Approach for Open-Set RFF Authentication

135   0   0.0 ( 0 )
 Added by Renjie Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Radio-frequency fingerprints~(RFFs) are promising solutions for realizing low-cost physical layer authentication. Machine learning-based methods have been proposed for RFF extraction and discrimination. However, most existing methods are designed for the closed-set scenario where the set of devices is remains unchanged. These methods can not be generalized to the RFF discrimination of unknown devices. To enable the discrimination of RFF from both known and unknown devices, we propose a new end-to-end deep learning framework for extracting RFFs from raw received signals. The proposed framework comprises a novel preprocessing module, called neural synchronization~(NS), which incorporates the data-driven learning with signal processing priors as an inductive bias from communication-model based processing. Compared to traditional carrier synchronization techniques, which are static, this module estimates offsets by two learnable deep neural networks jointly trained by the RFF extractor. Additionally, a hypersphere representation is proposed to further improve the discrimination of RFF. Theoretical analysis shows that such a data-and-model framework can better optimize the mutual information between device identity and the RFF, which naturally leads to better performance. Experimental results verify that the proposed RFF significantly outperforms purely data-driven DNN-design and existing handcrafted RFF methods in terms of both discrimination and network generalizability.



rate research

Read More

A reinforcement-learning-based non-uniform compressed sensing (NCS) framework for time-varying signals is introduced. The proposed scheme, referred to as RL-NCS, aims to boost the performance of signal recovery through an optimal and adaptive distribution of sensing energy among two groups of coefficients of the signal, referred to as the region of interest (ROI) coefficients and non-ROI coefficients. The coefficients in ROI usually have greater importance and need to be reconstructed with higher accuracy compared to non-ROI coefficients. In order to accomplish this task, the ROI is predicted at each time step using two specific approaches. One of these approaches incorporates a long short-term memory (LSTM) network for the prediction. The other approach employs the previous ROI information for predicting the next step ROI. Using the exploration-exploitation technique, a Q-network learns to choose the best approach for designing the measurement matrix. Furthermore, a joint loss function is introduced for the efficient training of the Q-network as well as the LSTM network. The result indicates a significant performance gain for our proposed method, even for rapidly varying signals and a reduced number of measurements.
112 - Hengtao He , Rui Wang , Weijie Jin 2020
Millimeter-wave (mmWave) communications have been one of the promising technologies for future wireless networks that integrate a wide range of data-demanding applications. To compensate for the large channel attenuation in mmWave band and avoid high hardware cost, a lens-based beamspace massive multiple-input multiple-output (MIMO) system is considered. However, the beam squint effect in wideband mmWave systems makes channel estimation very challenging, especially when the receiver is equipped with a limited number of radio-frequency (RF) chains. Furthermore, the real channel data cannot be obtained before the mmWave system is used in a new environment, which makes it impossible to train a deep learning (DL)-based channel estimator using real data set beforehand. To solve the problem, we propose a model-driven unsupervised learning network, named learned denoising-based generalized expectation consistent (LDGEC) signal recovery network. By utilizing the Steins unbiased risk estimator loss, the LDGEC network can be trained only with limited measurements corresponding to the pilot symbols, instead of the real channel data. Even if designed for unsupervised learning, the LDGEC network can be supervisingly trained with the real channel via the denoiser-by-denoiser way. The numerical results demonstrate that the LDGEC-based channel estimator significantly outperforms state-of-the-art compressive sensing-based algorithms when the receiver is equipped with a small number of RF chains and low-resolution ADCs.
A core issue with learning to optimize neural networks has been the lack of generalization to real world problems. To address this, we describe a system designed from a generalization-first perspective, learning to update optimizer hyperparameters instead of model parameters directly using novel features, actions, and a reward function. This system outperforms Adam at all neural network tasks including on modalities not seen during training. We achieve 2x speedups on ImageNet, and a 2.5x speedup on a language modeling task using over 5 orders of magnitude more compute than the training tasks.
Energy harvesting from the surroundings is a promising solution to perpetually power-up wireless sensor communications. This paper presents a data-driven approach of finding optimal transmission policies for a solar-powered sensor node that attempts to maximize net bit rates by adapting its transmission parameters, power levels and modulation types, to the changes of channel fading and battery recharge. We formulate this problem as a discounted Markov decision process (MDP) framework, whereby the energy harvesting process is stochastically quantized into several representative solar states with distinct energy arrivals and is totally driven by historical data records at a sensor node. With the observed solar irradiance at each time epoch, a mixed strategy is developed to compute the belief information of the underlying solar states for the choice of transmission parameters. In addition, a theoretical analysis is conducted for a simple on-off policy, in which a predetermined transmission parameter is utilized whenever a sensor node is active. We prove that such an optimal policy has a threshold structure with respect to battery states and evaluate the performance of an energy harvesting node by analyzing the expected net bit rate. The design framework is exemplified with real solar data records, and the results are useful in characterizing the interplay that occurs between energy harvesting and expenditure under various system configurations. Computer simulations show that the proposed policies significantly outperform other schemes with or without the knowledge of short-term energy harvesting and channel fading patterns.
The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $mathcal{S}$ and the action space $mathcal{A}$ are both finite, to obtain a nearly optimal policy with sampling access to a generative model, the minimax optimal sample complexity scales linearly with $|mathcal{S}|times|mathcal{A}|$, which can be prohibitively large when $mathcal{S}$ or $mathcal{A}$ is large. This paper considers a Markov decision process (MDP) that admits a set of state-action features, which can linearly express (or approximate) its probability transition kernel. We show that a model-based approach (resp.$~$Q-learning) provably learns an $varepsilon$-optimal policy (resp.$~$Q-function) with high probability as soon as the sample size exceeds the order of $frac{K}{(1-gamma)^{3}varepsilon^{2}}$ (resp.$~$$frac{K}{(1-gamma)^{4}varepsilon^{2}}$), up to some logarithmic factor. Here $K$ is the feature dimension and $gammain(0,1)$ is the discount factor of the MDP. Both sample complexity bounds are provably tight, and our result for the model-based approach matches the minimax lower bound. Our results show that for arbitrarily large-scale MDP, both the model-based approach and Q-learning are sample-efficient when $K$ is relatively small, and hence the title of this paper.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا