Do you want to publish a course? Click here

A Framework of Severity for Harmful Content Online

130   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The proliferation of harmful content on online social media platforms has necessitated empirical understandings of experiences of harm online and the development of practices for harm mitigation. Both understandings of harm and approaches to mitigating that harm, often through content moderation, have implicitly embedded frameworks of prioritization - what forms of harm should be researched, how policy on harmful content should be implemented, and how harmful content should be moderated. To aid efforts of better understanding the variety of online harms, how they relate to one another, and how to prioritize harms relevant to research, policy, and practice, we present a theoretical framework of severity for harmful online content. By employing a grounded theory approach, we developed a framework of severity based on interviews and card-sorting activities conducted with 52 participants over the course of ten months. Through our analysis, we identified four Types of Harm (physical, emotional, relational, and financial) and eight Dimensions along which the severity of harm can be understood (perspectives, intent, agency, experience, scale, urgency, vulnerability, sphere). We describe how our framework can be applied to both research and policy settings towards deeper understandings of specific forms of harm (e.g., harassment) and prioritization frameworks when implementing policies encompassing many forms of harm.



rate research

Read More

This White Paper summarizes the authors discussion regarding objectionable content for the University of Houston (UH) Research Team to outline a strategy for building an extensive repository of online videos to support research into automated multimodal approaches to detect objectionable content. The workshop focused on defining what harmful content is, to whom it is harmful, and why it is harmful.
Online experimentation platforms abstract away many of the details of experimental design, ensuring experimenters do not have to worry about sampling, randomisation, subject tracking, data collection, metric definition and interpretation of results. The recent success and rapid adoption of these platforms in the industry might in part be attributed to the ease-of-use these abstractions provide. Previous authors have pointed out there are common pitfalls to avoid when running controlled experiments on the web and emphasised the need for experts familiar with the entire software stack to be involved in the process. In this paper, we argue that these pitfalls and the need to understand the underlying complexity are not the result of shortcomings specific to existing platforms which might be solved by better platform design. We postulate that they are a direct consequence of what is commonly referred to as the law of leaky abstractions. That is, it is an inherent feature of any software platform that details of its implementation leak to the surface, and that in certain situations, the platforms consumers necessarily need to understand details of underlying systems in order to make proficient use of it. We present several examples of this concept, including examples from literature, and suggest some possible mitigation strategies that can be employed to reduce the impact of abstraction leakage. The conceptual framework put forward in this paper allows us to explicitly categorize experimentation pitfalls in terms of which specific abstraction is leaking, thereby aiding implementers and users of these platforms to better understand and tackle the challenges they face.
Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abusing social entities. Detecting such harmful memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general, and only one specialized dataset for it. Here, we focus on bridging this gap. In particular, we aim to solve two novel tasks: detecting harmful memes and identifying the social entities they target. We further extend the recently released HarMeme dataset to generalize on two prevalent topics - COVID-19 and US politics and name the two datasets as Harm-C and Harm-P, respectively. We then propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal (text + image) deep neural model, which uses global and local perspectives to detect harmful memes. MOMENTA identifies the object proposals and attributes and uses a multimodal model to perceive the comprehensive context in which the objects and the entities are portrayed in a given meme. MOMENTA is interpretable and generalizable, and it outperforms numerous baselines.
In this paper we propose applying the crowdsourcing approach to a software platform that uses a modern and state-of-the-art 3D game engine. This platform could facilitate the generation and manipulation of interactive 3D environments by a community of users producing different content such as cultural heritage, scientific virtual labs, games, novel art forms and virtual museums.
This paper reviews the causes of discomfort in viewing stereoscopic content. These include objective factors, such as misaligned images, as well as subjective factors, such as excessive disparity. Different approaches to the measurement of visual discomfort are also reviewed, in relation to the underlying physiological and psychophysical processes. The importance of understanding these issues, in the context of new display technologies, is emphasized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا