Do you want to publish a course? Click here

Rethinking Architecture Selection in Differentiable NAS

78   0   0.0 ( 0 )
 Added by Ruochen Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Differentiable Neural Architecture Search is one of the most popular Neural Architecture Search (NAS) methods for its search efficiency and simplicity, accomplished by jointly optimizing the model weight and architecture parameters in a weight-sharing supernet via gradient-based algorithms. At the end of the search phase, the operations with the largest architecture parameters will be selected to form the final architecture, with the implicit assumption that the values of architecture parameters reflect the operation strength. While much has been discussed about the supernets optimization, the architecture selection process has received little attention. We provide empirical and theoretical analysis to show that the magnitude of architecture parameters does not necessarily indicate how much the operation contributes to the supernets performance. We propose an alternative perturbation-based architecture selection that directly measures each operations influence on the supernet. We re-evaluate several differentiable NAS methods with the proposed architecture selection and find that it is able to extract significantly improved architectures from the underlying supernets consistently. Furthermore, we find that several failure modes of DARTS can be greatly alleviated with the proposed selection method, indicating that much of the poor generalization observed in DARTS can be attributed to the failure of magnitude-based architecture selection rather than entirely the optimization of its supernet.

rate research

Read More

177 - Nicolo Colombo , Yang Gao 2021
We propose a new gradient-based approach for extracting sub-architectures from a given large model. Contrarily to existing pruning methods, which are unable to disentangle the network architecture and the corresponding weights, our architecture-pruning scheme produces transferable new structures that can be successfully retrained to solve different tasks. We focus on a transfer-learning setup where architectures can be trained on a large data set but very few data points are available for fine-tuning them on new tasks. We define a new gradient-based algorithm that trains architectures of arbitrarily low complexity independently from the attached weights. Given a search space defined by an existing large neural model, we reformulate the architecture search task as a complexity-penalized subset-selection problem and solve it through a two-temperature relaxation scheme. We provide theoretical convergence guarantees and validate the proposed transfer-learning strategy on real data.
Neural architecture search can discover neural networks with good performance, and One-Shot approaches are prevalent. One-Shot approaches typically require a supernet with weight sharing and predictors that predict the performance of architecture. However, the previous methods take much time to generate performance predictors thus are inefficient. To this end, we propose FOX-NAS that consists of fast and explainable predictors based on simulated annealing and multivariate regression. Our method is quantization-friendly and can be efficiently deployed to the edge. The experiments on different hardware show that FOX-NAS models outperform some other popular neural network architectures. For example, FOX-NAS matches MobileNetV2 and EfficientNet-Lite0 accuracy with 240% and 40% less latency on the edge CPU. FOX-NAS is the 3rd place winner of the 2020 Low-Power Computer Vision Challenge (LPCVC), DSP classification track. See all evaluation results at https://lpcv.ai/competitions/2020. Search code and pre-trained models are released at https://github.com/great8nctu/FOX-NAS.
Neural architecture search (NAS) aims to discover network architectures with desired properties such as high accuracy or low latency. Recently, differentiable NAS (DNAS) has demonstrated promising results while maintaining a search cost orders of magnitude lower than reinforcement learning (RL) based NAS. However, DNAS models can only optimize differentiable loss functions in search, and they require an accurate differentiable approximation of non-differentiable criteria. In this work, we present UNAS, a unified framework for NAS, that encapsulates recent DNAS and RL-based approaches under one framework. Our framework brings the best of both worlds, and it enables us to search for architectures with both differentiable and non-differentiable criteria in one unified framework while maintaining a low search cost. Further, we introduce a new objective function for search based on the generalization gap that prevents the selection of architectures prone to overfitting. We present extensive experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets and we perform search in two fundamentally different search spaces. We show that UNAS obtains the state-of-the-art average accuracy on all three datasets when compared to the architectures searched in the DARTS space. Moreover, we show that UNAS can find an efficient and accurate architecture in the ProxylessNAS search space, that outperforms existing MobileNetV2 based architectures. The source code is available at https://github.com/NVlabs/unas .
Federated learning is an emerging research paradigm enabling collaborative training of machine learning models among different organizations while keeping data private at each institution. Despite recent progress, there remain fundamental challenges such as lack of convergence and potential for catastrophic forgetting in federated learning across real-world heterogeneous devices. In this paper, we demonstrate that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts and hence improve federated learning over heterogeneous data. Concretely, we conduct the first rigorous empirical investigation of different neural architectures across a range of federated algorithms, real-world benchmarks, and heterogeneous data splits. Our experiments show that simply replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices, accelerate convergence, and reach a better global model, especially when dealing with heterogeneous data. We will release our code and pretrained models at https://github.com/Liangqiong/ViT-FL-main to encourage future exploration in robust architectures as an alternative to current research efforts on the optimization front.
With leveraging the weight-sharing and continuous relaxation to enable gradient-descent to alternately optimize the supernet weights and the architecture parameters through a bi-level optimization paradigm, textit{Differentiable ARchiTecture Search} (DARTS) has become the mainstream method in Neural Architecture Search (NAS) due to its simplicity and efficiency. However, more recent works found that the performance of the searched architecture barely increases with the optimization proceeding in DARTS. In addition, several concurrent works show that the NAS could find more competitive architectures without labels. The above observations reveal that the supervision signal in DARTS may be a poor indicator for architecture optimization, inspiring a foundational question: instead of using the supervision signal to perform bi-level optimization, textit{can we find high-quality architectures textbf{without any training nor labels}}? We provide an affirmative answer by customizing the NAS as a network pruning at initialization problem. By leveraging recent techniques on the network pruning at initialization, we designed a FreeFlow proxy to score the importance of candidate operations in NAS without any training nor labels, and proposed a novel framework called textit{training and label free neural architecture search} (textbf{FreeNAS}) accordingly. We show that, without any training nor labels, FreeNAS with the proposed FreeFlow proxy can outperform most NAS baselines. More importantly, our framework is extremely efficient, which completes the architecture search within only textbf{3.6s} and textbf{79s} on a single GPU for the NAS-Bench-201 and DARTS search space, respectively. We hope our work inspires more attempts in solving NAS from the perspective of pruning at initialization.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا