No Arabic abstract
The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprecedented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instrument for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS~0506+056 have shown the importance of coordinated follow-up observations triggered by these different cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large effective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Transients physics working group to perform the study of transient sources in the very-high-energy regime.
The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators.
The Cherenkov Telescope Array (CTA) will be the major global observatory for VHE gamma-ray astronomy over the next decade and beyond. It will be an explorer of the extreme universe, with a broad scientific potential: from understanding the role of relativistic cosmic particles, to the search for dark matter. Covering photon energies from 20 GeV to 300 TeV, and with an angular resolution unique in the field, of about 1 arc min, CTA will improve on all aspects of the performance with respect to current instruments, surveying the high energy sky hundreds of times faster than previous TeV telescopes, and with a much deeper view. The very large collection area of CTA makes it an important probe of transient phenomena. The first CTA telescope has just been inaugurated in the Canary Islands, Spain, and as more telescopes are added in the coming years, scientific operation will start. It is evident that CTA will have important synergies with many of the new generation astronomical and astroparticle observatories. In this talk we will review the CTA science case from the point of view of its synergies with other instruments and facilities, highlighting the CTA needs in terms of external data, as well as the opportunities and strategies for cooperation to achieve the basic CTA science goals.
The birth of gravitational-wave / electromagnetic astronomy was heralded by the joint observation of gravitational waves (GWs) from a binary neutron star (BNS) merger by Advanced LIGO and Advanced Virgo, GW170817, and of gamma-rays from the short gamma-ray burst GRB170817A by the Fermi Gamma-ray Burst Monitor (GBM) and INTEGRAL. This detection provided the first direct evidence that at least a fraction of BNSs are progenitors of short GRBs. GRBs are now also known to emit very-high-energy (VHE, > 100 GeV) photons as has been shown by recent independent detections of the GRBs 1901114C and 180720B by the ground-based gamma-ray detectors MAGIC and H.E.S.S. In the next years, the Cherenkov Telescope Array (CTA) will boost the searches for VHE counterparts thanks to its unprecedented sensitivity, rapid response and capability to monitor large sky areas via survey-mode operation. In this contribution, we present the CTA program of observations following the detection of GW events. We discuss various follow-up strategies and links to multi-wavelength and multi-messenger observations. Finally we outline the capabilities and prospects of detecting VHE emission from GW counterparts.
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E$>$100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.
The Cherenkov Telescope Array (CTA) will be able to perform unprecedented observations of the transient very high-energy sky. An on-line science alert generation (SAG) pipeline, with a required 30 second latency, will allow the discovery or follow-up of gamma ray bursts (GRBs) and flaring emission from active galactic nuclei, galactic compact objects and electromagnetic counterparts of gravitational waves or neutrino messengers. The CTA sensitivity for very short exposures does not only depend on the technological performance of the array (e.g. effective area, background discrimination efficiency). The algorithms to evaluate the significance of the detection also define the sensitivity, together with their computational efficiency in order to satisfy the SAG latency requirements. We explore the aperture photometry and likelihood analysis techniques, and the associated parameters (e.g. on-source to off-source exposure ratio, minimum number of required signal events), defining the CTA ability to detect a significant signal at short exposures. The resulting CTA differential flux sensitivity as a function of the observing time, obtained using the latest Monte Carlo simulations, is compared to the sensitivities of Fermi-LAT and current-generation IACTs obtained in the overlapping energy ranges.