No Arabic abstract
We propose a new method to study non-equilibrium dynamics of scalar fields starting from non-Gaussian initial conditions using Keldysh field theory. We use it to study dynamics of phonons coupled to bosonic and fermionic baths, starting from initial Fock states. We find that in one dimension long wavelength phonons coupled to fermionic baths do not thermalize both at low and high bath temperatures. At low temperature, constraints from energy-momentum conservation lead to a narrow bandwidth of particle-hole excitations and the phonons effectively do not feel the effects of this bath. On the other hand, the strong band edge divergence of particle-hole density of states leads to an undamped polariton-like mode of the dressed phonons above the band edge of the particle-hole excitations. These undamped modes contribute to the lack of thermalization of long wavelength phonons at high temperatures. In higher dimensions, these constraints and the divergence of density of states are weakened and leads to thermalization at all wavelengths.
We study the 2d phase transition of a driven-dissipative system of exciton-polaritons under non-resonant pumping. Stochastic calculations are used to investigate the Berezinskii-Kosterlitz-Thouless-like phase diagram for experimentally realistic parameters, with a special attention to the non-equilibrium features.
In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of $^{4}$He belongs to the same three dimensional $mathrm{O}(2)$ universality class as the onset of ferromagnetism in a lattice of classical spins with $XY$ symmetry. Below the transition, the superfluid density $rho_s$ and superfluid velocity $v_s$ increase as power laws of temperature described by a universal critical exponent constrained to be equal by scale invariance. As the dimensionality is reduced towards one dimension (1D), it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single $30~$nm long nanopores with radii ranging down from 20~nm to 3~nm. As the pore size is reduced towards the 1D limit, we observe: {it i)} a suppression of the pressure dependence of the superfluid velocity; {it ii)} a temperature dependence of $v_{s}$ that surprisingly can be well-fitted by a powerlaw with a single exponent over a broad range of temperatures; and {it iii)} decreasing critical velocities as a function of radius for channel sizes below $R simeq 20$~nm, in stark contrast with what is observed in micron sized channels. We interpret these deviations from bulk behaviour as signaling the crossover to a quasi-1D state whereby the size of a critical topological defect is cut off by the channel radius.
The Kibble-Zurek mechanism constitutes one of the most fascinating and universal phenomena in the physics of critical systems. It describes the formation of domains and the spontaneous nucleation of topological defects when a system is driven across a phase transition exhibiting spontaneous symmetry breaking. While a characteristic dependence of the defect density on the speed at which the transition is crossed was observed in a vast range of equilibrium condensed matter systems, its extension to intrinsically driven-dissipative systems is a matter of ongoing research. In this work we numerically confirm the Kibble-Zurek mechanism in a paradigmatic family of driven-dissipative quantum systems, namely exciton-polaritons in microcavities. Our findings show how the concepts of universality and critical dynamics extend to driven-dissipative systems that do not conserve energy or particle number nor satisfy a detailed balance condition.
We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature.
We study the non-equilibrium dynamics of two tunnel-coupled one-dimensional quasicondensates following a quench of the coupling strength from zero to a fixed finite value. More specifically, starting from two independent quasicondensates in thermal equilibrium, with initial temperature and chemical potential imbalance, we suddenly switch on the tunnel-coupling and analyse the post-quench equilibration in terms of particle number and energy imbalances. We find that, in certain parameter regimes, the net energy can flow from the colder quasicondensate to the hotter one and is governed by the surplus of low energy particles flowing from the cold to the hot system relative to the high-energy particles flowing in the reverse direction. In all cases, the approach to the new thermal equilibrium occurs through transient, damped oscillations. We also find that for a balanced initial state the coupled quasicondensates can relax into a final thermal equilibrium state in which they display a thermal phase coherence length that is larger than their initial phase coherence length, even though the new equilibrium temperature is higher. The increase in the phase coherence length occurs due to phase locking which manifests itself via an increased degree of correlation between the local relative phases of the quasicondensates at two arbitrary points.