Brownian Curzon-Ahlborn heat engine


Abstract in English

The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact in finite-time thermodynamics. In the past two decades, a lot of efforts have been made to seek a microscopic theory of the CA efficiency. It is generally believed that the CA efficiency is approached in the symmetric low-dissipation regime of dynamical models. Contrary to the general belief, without the low-dissipation assumption, we formulate a microscopic theory of the CA engine realized with an underdamped Brownian particle in a class of non-harmonic potentials. This microscopic theory not only explains the dynamical origin of all assumptions made by Curzon and Ahlborn, but also confirms that in the highly underdamped regime, the CA efficiency is always the EMP irrespective of the symmetry of the dissipation. The low-dissipation regime is included in the microscopic theory as a special case. Also, based on this theory, we obtain the control scheme associated with the maximum power for any given efficiency, as well as analytical expressions of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental study of finite-time microscopic heat engines featured with fluctuations.

Download