Do you want to publish a course? Click here

Progress in Nuclear Astrophysics of East and Southeast Asia

95   0   0.0 ( 0 )
 Added by Motohiko Kusakabe
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear astrophysics is an interdisciplinary research field of nuclear physics and astrophysics, seeking for the answer to a question, how to understand the evolution of the Universe with the nuclear processes which we learn. We review the research activities of nuclear astrophysics in east and southeast Asia which includes astronomy, experimental and theoretical nuclear physics and astrophysics. Several hot topics such as the Li problems, critical nuclear reactions and properties in stars, properties of dense matter, r-process nucleosynthesis and $ u$-process nucleosynthesis are chosen and discussed in further details. Some future Asian facilities, together with physics perspectives, are introduced.



rate research

Read More

Nuclear astrophysics, the union of nuclear physics and astronomy, went through an impressive expansion during the last twenty years. This could be achieved thanks to milestone improvements in astronomical observations, cross section measurements, powerful computer simulations and much refined stellar models. Italian groups are giving quite important contributions to every domain of nuclear astrophysics, sometimes being the leaders of worldwide unique experiments. In this paper we will discuss the astrophysical scenarios where nuclear astrophysics plays a key role and we will provide detailed descriptions of the present and future of the experiments on nuclear astrophysics which belong to the scientific programme of INFN (the National Institute for Nuclear Physics in Italy).
The origin of the elements is a fascinating question that scientists have been trying to answer for the last seven decades. The formation of light elements in the primordial universe and heavier elements in astrophysical sources occurs through nuclear reactions. We can say that nuclear processes are responsible for the production of energy and synthesis of elements in the various astrophysical sites. Thus, nuclear reactions have a determining role in the existence and evolution of several astrophysical environments, from the Sun to the spectacular explosions of supernovae. Nuclear astrophysics attempts to address the most basic and important questions of our existence and future. There are still many issues that are unresolved such as, how stars and our Galaxy have formed and how they evolve, how and where are the heaviest elements made, what is the abundance of nuclei in the universe and what is the nucleosynthesis output of the various production processes and why the amount of lithium-7 observed is less than predicted. In this paper, we review our current understanding of the different astrophysical nuclear processes leading to the formation of chemical elements and pay particular attention to the formation of heavy elements occurring during high-energy astrophysical events. Thanks to the recent multi-messenger observation of a binary neutron star merger, which also confirmed production of heavy elements, explosive scenarios such as short gamma-ray bursts and the following kilonovae are now strongly supported as nucleosynthesis sites.
The primary aim of experimental nuclear astrophysics is to determine the rates of nuclear reactions taking place in stars in various astrophysical conditions. These reaction rates are important ingredient for understanding the elemental abundance distribution in our solar system and the galaxy. The reaction rates are determined from the cross sections which need to be measured at energies as close to the astrophysically relevant ones as possible. In many cases the final nucleus of an astrophysically important reaction is radioactive which allows the cross section to be determined based on the off-line measurement of the number of produced isotopes. In general, this technique is referred to as the activation method, which often has substantial advantages over in-beam particle- or gamma-detection measurements. In this paper the activation method is reviewed from the viewpoint of nuclear astrophysics. Important aspects of the activation method are given through several reaction studies for charged particle, neutron and gamma-induced reactions. Various techniques for the measurement of the produced activity are detailed. As a special case of activation, the technique of Accelerator Mass Spectrometry in cross section measurements is also reviewed.
In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g. in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model.
Reactions with radioactive nuclear beams at relativistic energies have opened new doors to clarify the mechanisms of stellar evolution and cataclysmic events involving stars and during the big bang epoch. Numerous nuclear reactions of astrophysical interest cannot be assessed directly in laboratory experiments. Ironically, some of the information needed to describe such reactions, at extremely low energies (e.g., keVs), can only be studied on Earth by using relativistic collisions between heavy ions at GeV energies. In this contribution, we make a short review of experiments with relativistic radioactive beams and of the theoretical methods needed to understand the physics of stars, adding to the knowledge inferred from astronomical observations. We continue by introducing a more detailed description of how the use of relativistic radioactive beams can help to solve astrophysical puzzles and several successful experimental methods. State-of-the-art theories are discussed at some length with the purpose of helping us understand the experimental results reported. The review is not complete and we have focused most of it to traditional methods aiming at the determination of the equation of state of symmetric and asymmetric nuclear matter and the role of the symmetry energy. Whenever possible, under the limitations of our present understanding of experimental data and theory, we try to pinpoint the information still missing to further understand how stars evolve, explode, and how their internal structure might be.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا